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Abstract Fundamentals of the three-dimensional spatial
harmonic analysis (SHA) approach are reviewed, and the ad-
vantages of a fast-converging formulation versus the initial
SHA formulation are emphasized with examples using peri-
odic plasmonic nanostructures. First, two independent paral-
lel versions of both formulations are implemented using the
scattering matrix algorithm for multilayer cascading. Then,
by comparing the results from both formulations, it is shown
that choosing an advanced fast-converging scheme could be
essential for accurate and efficient modeling of plasmonic
structures. Important obstacles to the fast parallel imple-
mentation of this approach are also revealed. The results of
test simulations are validated using the data obtained from
a commercial finite-element method (FEM) simulations and
from the experimental characterization of fabricated sam-
ples.

1 Introduction

The spatial harmonic analysis (SHA) method, also known
as the Fourier modal method (FMM) or rigorous coupled
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wave analysis (RCWA), is one of the most versatile meth-
ods for analyzing the diffraction of electromagnetic waves
by periodic structures. Our SHA approach is a non-iterative
and mesh-free technique for obtaining the exact solution
of Maxwell’s equations using the Floque–Bloch formal-
ism. The accuracy of the solution depends solely on the
number of modes in the spatial harmonic expansion of the
field.

2D formulations of SHA and related methods were ini-
tially done in the 1950s, and since then, were extended
and generalized by many researchers [1–13]. Later, it has
been shown that the SHA approach can be used to ana-
lyze three dimensional bi-periodic structures [14–16]. In
1996, a fast-convergence formulation was proposed to
solve the slow convergence problem for TM polariza-
tion (magnetic-field vector perpendicular to the grating)
by Lalanne and Morris [17], and Granet and Guizal [18],
and the mathematical foundation of this formulation was
given in [19], Sect. 3.8. Theoretical aspects of this approach
for 3D bi-periodic structures has been developed by Li
[20]. The recursive matrix algorithm for cascading multi-
ple layers was also studied intensively [21–25]. Nowadays,
the SHA method is used for analyzing sub-wavelength-
periodic structures, such as nanostructured metamaterials
[26–29].

In this paper, the formulation of the SHA method for
three-dimensional structures (bi-periodic multilayer struc-
tures) is presented based on previous works. The scattering
matrix algorithm is used to cascade multiple layers. Numer-
ical tests are conducted based on a nanoantenna sample and
the results are compared with those obtained from exper-
iments and finite-element method simulations. The conver-
gence of the initial formulation and the fast-convergence for-
mulation is studied and compared.
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Fig. 1 Diagram of the k vector of a linear polarized incident light

2 Theory

2.1 Plane wave incidence

In order to simulate the electromagnetic fields in our model
system, we must consider the mathematics used to describe
the fields. We assume a plane-wave incidence and denote the
k vector of the incident wave as �kin as shown in Fig. 1. Using
�kin = kin,x x̂ + kin,y ŷ + kin,zẑ, where

kin,x = nsup cos θ, (1)

kin,y = nsup sin θ cosφ, (2)

kin,z = nsup sin θ sinφ, (3)

and nsup is the refractive index at the source (input) side,
the electric field incident on the structure can be de-
fined as �Ein = �Ein,0 exp(jk0�kin · �r). The time dependence
exp(−jωt) is assumed throughout this paper. The incident
magnetic field is obtained through �Hin = j (μω)−1∇ × �E0

or �Hin = −(η0ηr)
−1�kin × �Ein,0 exp(jk0�kin · �r), where η0 =√

μ0/ε0, is the impedance of free space and ηr = √
μr/εr ,

is the relative impedance. We also assume that the incident
plane wave is linearly polarized. The polarization vector û,
which denotes the direction of the incident magnetic field in
this paper, can be written as û = ux x̂ + uy ŷ + uzẑ, where

ux = − cosψ sin θ, (4)

uy = cosψ cos θ cosφ − sinψ sinφ, (5)

uz = cosψ cos θ sinφ + sinψ cosφ. (6)

2.2 Eigenvalue problem

We start with Maxwell’s curl equations ∇ × �E = jω �B and
∇ × �H = −jω �D, and since ∇ · �H = 0, i.e. ∇ × ∇ × �H =
−∇2 �H , we arrive at

−ε−1
r ∇2 �H = −∇ε−1 × ∇ × �H + k2

0
�H. (7)

Fig. 2 Sketch of an example three-dimensional periodic unit cell

We note that the structure under analysis has permittiv-
ity periodically modulated along the y and z directions and
invariant along the x direction. The periods along y and z

directions are ly and lz, respectively. An example unit cell
of such structure is shown in Fig. 2. Thus, each field com-
ponent can be expressed as

Hi = ṽiUci , i = x, y, z, (8)

where ci is a vector of relative amplitude coefficients.
Namely, each field component is written as the product of a
periodic part ṽi = ṽi (y, z) and a wavelike part

U = diag
[
exp

(
jk0k

(−Mx)
x x

)
, . . . , exp

(
jk0k

(Mx)
x x

)]
(9)

as a consequence of Bloch’s theorem, where diag[·] denotes
the arrangement of a diagonal matrix with the elements of a
vector on the main diagonal. mx is the mode number, which
ranges from −∞ to ∞ in theory. However, in order to make
it numerically feasible, we truncate the infinite series to only
keep the modes from −Mx to Mx . Note that the following
discussion is based on this truncation criteria.

By denoting ∂/∂x ≡ ∂x , ∂/∂y ≡ ∂y , ∂/∂z ≡ ∂z, ∂2/∂x2 ≡
∂xx and so on, we can get the following equations from (7):

εr(∂xxHy + ∂yyHy + ∂yzHz) + k2
0Hy

= ∂z

[
ε−1
r (∂yHz − ∂zHy)

]
, (10)

εr(∂xxHz + ∂yyHz + ∂zyHz) + k2
0Hz

= ∂y

[
ε−1
r (∂zHy − ∂yHz)

]
. (11)

We expand ṽ(y, z) in the 2-dimensional Fourier space and
let v be the basis of the space, which is expressed as

v = [
v(−My,−Mz), . . . , v(−My,Mz), v(−My+1,−Mz),

v(−My+1,−Mz+1), . . . , v(My,Mz)
]T

. (12)

Each element in v is expressed as

v(my,mz) = exp
[
j
(
k0k

(my)
y y + k0k

(mz)
y z

)]
, (13)

where k
(my)
y = kin,y + myλ/ly , k

(my)
z = kin,z + mzλ/lz,

my and mz are the mode numbers, which can range from
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−∞ to ∞. Since here we already chose to use a truncated
version for the numerical computation, my and mz are from
−My to My and from −Mz to Mz, respectively. kin,y and
kin,z are defined in Sect. 2.1. The index number of nth com-
ponent in vector v satisfies the index equation

n = (my + My)(2Mz + 1) + mz + Mz + 1. (14)

Thus, (8) can be expressed in the following matrix form

Hi = vT H̃Uci , i = x, y, z, (15)

where v = v(y, z) and vi = vT H̃i . We note that ci is re-
dundant and can be incorporated into H̃i . Thus (15) can be
rewritten as

Hi = vT Hiυυυ, i = x, y, z, (16)

where υυυ is a vector consisting of the diagonal elements
of matrix U, and Hi is a (2My + 1)(2My + 1) × Mx di-
mensional coefficient matrix. Hence, using matrix notation,
(10) and (11) can be rewritten as

−ε−1
r vT

(
HyK2

xυυυ + K2
yHyυυυ + KyKzHzυυυ

) + vT Hyυυυ

= k−1
0 ∂z

[
jε−1

r

(
vT KyHzυυυ − vT KzHyυυυ

)]
, (17)

−ε−1
r vT

(
HzK2

xυυυ + K2
yHzυυυ + KzKyHyυυυ

) + vT Hzυυυ

= k−1
0 ∂y

[
jε−1

r

(
vT KzHyυυυ − vT KyHzυυυ

)]
, (18)

where Kx , Ky and Kz are diagonal matrices, which have the
following form:

Kx = diag
[
k(1)
x , k(2)

x , . . . , k(Mx)
x

]
, (19)

Ky = diag
[
k

(−My)
y ,k

(−My+1)
y , . . . ,k

(My)
y

]
, (20)

Kz = diag[kz,kz, . . . ,kz]2My+1, (21)

where k
(my)
y = diag[k(my)

y , k
(my)
y , . . . , k

(my)
y ]2Mz+1, kz =

diag[k(−Mz)
z , k

(−Mz+1)
z , . . . , k

(Mz)
y ]. By expanding ε−1

r with
respect to the basis v

ε−1
r =

∑

p,q

γ̃ (p,q) exp

[
j

(
pλ

lx
x + qλ

ly
y

)]
. (22)

Then, we build a matrix �̃ such that

vT �̃ = ε−1
r vT . (23)

By matching the coefficients of the exponentials, we can find
the relationship between the element in row r column s of
the matrix �̃ and the Fourier coefficients in (22). We use
the four indices m, n, p and q to determine the (m − n,
p − q)th Fourier coefficient, n and p ranging from −My

to My , where n and q range from −Mz to Mz, and their re-
lationship can be expressed using the following index equa-
tions:

r = (m + My)(2Mz + 1) + n + Mz + 1, (24)

s = (p + My)(2Mz + 1) + q + Mz + 1. (25)

Thus, by using (23) we can rewrite (17) and (18) as

vT
[
I − (

�̃HyK2
xH−1

y + �̃K2
y + Kz�̃Kz

)]
Hyυυυ

= vT (�̃KyKz − Kz�̃Ky)Hzυυυ, (26)

vT
[
I − (

�̃HzK2
xH−1

z + �̃K2
z + Ky�̃Ky

)]
Hzυυυ

= vT (�̃KzKy − Ky�̃Kz)Hyυυυ, (27)

where I is the identity matrix. The coefficients of each mode
should be matched, thus (26) and (27) can be rewritten as
two matrix equations

[
I − (

�̃HyK2
xH−1

y + �̃K2
y + Kz�̃Kz

)]
Hy

= (�̃KyKz − Kz�̃Ky)Hz, (28)
[
I − (

�̃HzK2
xH−1

z + �̃K2
z + Ky�̃Ky

)]
Hz

= (�̃KzKy − Ky�̃Kz)Hy. (29)

By combining (28) and (29), we obtain a system
[

I − �̃K2
y − Kz�̃Kz Kz�̃Ky − �̃KyKz

Ky�̃Kz − �̃KzKy I − �̃K2
z − Ky�̃Ky

][
Hy

Hz

]

=
[

�̃ O
O �̃

][
Hy

Hz

]
K2

x, (30)

which defines K2
x and [Hy,Hz]T as a solution of the second-

order generalized eigenvalue problem (GEP).

2.3 Obtaining electrical fields

For each eigenvalue there exist two propagation constants
±Kx . In order to have physically meaningful propagation
constants, the imaginary part of the elements of Kx are cho-
sen to be positive, which corresponds to a forward propa-
gating wave; then −Kx denotes the backward propagating
wave.

We also write the electrical field components as Bloch
modes,

Ei = vT Eiυυυ, i = x, y, z. (31)

From Maxwell’s curl equations, ∇ × �E = jωμ �H and
∇ × �H = −jωε �E, we get

∂xEy = jωμHz − ∂y

[
(jωε)−1 (∂yHz − ∂zHy)

]
, (32)
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∂xEz = jωμHy − ∂z

[
(jωε)−1 (∂yHz − ∂zHy)

]
. (33)

Using the relations in (8), (31), we can rewrite (32) and (33)
as

η−1
0 vT KxEyυυυ

= vT
[
Ky�̃KzHy + (I − Ky�̃Ky)Hz

]
υυυ, (34)

η−1
0 vT KxEzυυυ

= vT
[
(−I + Kz�̃Kz)Hy − Kz�̃KyHz

]
υυυ. (35)

The coefficients of each mode should be matched, thus
scalar equations, (34) and (35), can be rewritten as the fol-
lowing matrix equation:

[
Ey

Ez

]
= η0

[
Ky�̃Kz I − Ky�̃Ky

−I + Kz�̃Kz Kz�̃Ky

]

× K−1
x

[
Hy

Hz

]
. (36)

2.4 Fast-convergence formulation

Many researchers [19, 30, 31] have found that there is a
problem in the Fourier expansion due to discontinuities in
the material dielectric function which causes a slow conver-
gence in the algorithm. Li introduced an inverse rule for the
Fourier expansion of the product of two functions f (x) and
g(x) [20]

[
FN

[
f (x)g(x)

]]
n

=
M∑

m=−M

�
FL

[
1

f (x)

]�−1

nm

[
FM

[
g(x)

]]
m
,

(37)

where FN [·] denotes the truncated Fourier coefficients
of a function, e.g. f (x) = ∑N

n=−N [FN [f (x)]]n exp(jnx),
and �v�pq denotes the (p, q)th entry of the matrix gen-
erated from the elements of vector v. Its value equals
the (p − q)th element of the vector whose index ranges
from −Max(q) to Max(p). It is stated in [20] that two
piecewise-smooth, bounded, periodic functions that have
only pairwise-complementary jump discontinuities should
be Fourier expanded by the inverse rule rather than Lau-
rent’s rule.

To apply the new Fourier expansion law in our algorithm,
we need to introduce the following new matrices. We apply

[
�̃y(z)

]
mn

= 1

ly

∫ ly

0

1

εr

exp
[−j (m − n)l̄yy

]
dy, (38)

[
�̃z(y)

]
pq

= 1

lz

∫ lz

0

1

εr

exp
[−j (m − n)l̄zz

]
dz, (39)

where l̄y = 2π/ly and l̄z = 2π/lz. Obviously �y and �z are
still functions of z and y, respectively

[�yz]rs = 1

lz

∫ lz

0

[[
�̃y(z)

]−1]
mp

exp
[−j (n − q)l̄zz

]
dz,

(40)

[�zy]rs = 1

ly

∫ ly

0

[[
�̃z(y)

]−1]
nq

exp
[−j (m − p)l̄yy

]
dy,

(41)

where the relation between r , s and m, n, p, q are defined
in (24) and (25). Then, we should modify (30) to be

[
�zy − K2

y − �zyKz�
−1Kz �zyKz�

−1Ky − KyKz

�yzKy�
−1Kz − KzKy �yz − K2

z − �yzKy�
−1Ky

]

×
[

Hy

Hz

]
=

[
Hy

Hz

]
K2

x, (42)

which defines K2
x and [Hy,Hz]T as a solution of the second-

order standard eigenvalue problem (SEP). Similarly, we
should also change the electrical field expression in (36) to

[
Ey

Ez

]
= η0

[
Ky�

−1Kz I − Ky�
−1Ky

−I + Kz�
−1Kz Kz�

−1Ky

]

× K−1
x

[
Hy

Hz

]
. (43)

Other methods for improving the convergence have been
studied [32–39]. Granet and Plumey showed that an ap-
propriately designed non-linear coordinate can increase the
spatial resolution around discontinuities, therefore reducing
the number of modes needed to achieve convergence [35].
Popov and Neviere proposed to use the local tangential and
normal fields in calculations to improve convergence [32–
34, 36], and their method has been shown to be effective by
various studies [37–39]. However, these methods all involve
coordinate transformations, which are structure-dependent,
hence non-universal and non-unique. Furthermore, if a mul-
tilayer structure contains different geometries in different
layers, then different transformations are required, which
makes cascading very difficult. Thus these methods are not
discussed in this paper.

2.5 Cascading layers using S-matrix algorithm

Note that the scattering matrix algorithm we presented in
this section is mainly based on the papers [24, 25]. Suppose
we have an N -layer structure as shown in Fig. 3. The layers
are indicated as Region 1 to Region N in the figure; Region 0
and Region N + 1 is the substrate and the superstrate, re-
spectively. We introduce a notation for the expansion of the
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Fig. 3 Abstract view of a multilayer structure with substrate in re-
gion 0 and superstrate in region N + 1

transverse fields

H(p)
t =

[
H(p)

y

H(p)
z

]

, E(p)
t =

[
E(p)

y

E(p)
z

]

, (44)

where the superscript (p) denotes the value for the pth layer.
δ is the thickness of the layer. Applying the boundary con-
ditions on the interface between Layer p and Layer p + 1,
we have
[

E(p+1)
t E(p+1)

t

H(p+1)
t −H(p+1)

t

][
u(p+1)

d(p+1)

]

=
[

E(p)
t E(p)

t

H(p)
t −H(p)

t

]

×
[

exp(jK(p)
x δ(p)) O

O exp(−jK(p)
x δ(p))

][
u(p)

d(p)

]

,

(45)

where vectors u and d are the coefficients of the eigenmodes
of upward wave and downward wave, respectively. The ex-
ponential operator for a diagonal matrix means exponentiat-
ing every entry on the main diagonal. For any 0 ≤ p ≤ N ,
matrix S(p) links the waves in layer p + 1 and medium 0 in
[

u(p+1)

d(0)

]

= S(p)

[
u(0)

d(p+1)

]

, (46)

where the matrix S(p) can be written as

S(p) =
[

T(p)
uu R(p)

ud

R(p)
du T(p)

dd

]

, (47)

and the four sub-matrices have the following physical mean-
ings; T is the transmission matrix, R is the reflection ma-
trix, and the subscripts denote which waves those matrices

link (u denotes an upward wave and d denotes a downward
wave).

Combining (45) and (47) to eliminate u(p) and d(p), we
obtain recursive expressions for the sub-matrices of S(p)

T(p)
uu = [

t(p)

1 − R(p)
ud t(p)

2

]
�

(p)
x T(p−1)

uu , (48)

R(p)
ud = [

t(p)

2 + t1�
(p)

][
t(p)

1 + t2�
(p)

]−1
, (49)

R(p)
du = R(p−1)

du − T(p)
dd t(p)

2 �
(p)
x T(p−1)

uu , (50)

T(p)
dd = T(p−1)

dd �
(p)
x

[
t(p)

1 + t2�
(p)

]−1
, (51)

where

t(p)

1 = 1

2

[(
E(p+1)

t

)−1E(p)
t + (

H(p+1)
t

)−1H(p)
t

]
, (52)

t(p)

2 = 1

2

[(
E(p+1)

t

)−1E(p)
t − (

H(p+1)
t

)−1H(p)
t

]
, (53)

�(p) = �
(p)
x R(p−1)

ud �
(p)
x , (54)

�
(p)
x = exp

(
jK(p)

x δ(p)
)
. (55)

To start the recursion, we can set

S(−1) =
[

I O
O I

]
, (56)

which means if we add a virtual layer between Layer 0 and
Layer 1, and the thickness of the layer is zero, then there is
no reflection on the interface. So the reflection matrices are
O and transmission matrices are I. Since Layer 0 is homo-
geneous, H(0)

t = I and

[
K(0)

x

]2 = n2
subI − K2

y − K2
z, (57)

where nsub is the reflective index of the substrate. Similarly,
in the Layer N + 1, we have H(N+1)

t = I and

[
K(N+1)

x

]2 = n2
supI − K2

y − K2
z, (58)

where nsup is the reflective index of the superstrate.

2.6 Diffraction coefficients for plane wave incidence

For plane-wave incidence as described in Sect. 2.1 on an N -
layered structure as shown in Fig. 3, we can easily find the
following conditions:

u(0) = [ 0,0, . . . ,0︸ ︷︷ ︸
2(2My+1)(2Mz+1)

]T , (59)

d(N+1) = [ 0, . . . ,0︸ ︷︷ ︸
2MyMz+My+Mz

,uy, 0, . . . ,0︸ ︷︷ ︸
2MyMz+My+Mz

,

0, . . . ,0︸ ︷︷ ︸
2MyMz+My+Mz

,uz, 0, . . . ,0︸ ︷︷ ︸
2MyMz+My+Mz

]T . (60)
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From (46) with p = N we can get the reflected wave co-
efficient u(N+1) and the transmitted wave coefficient d(0).
Without losing generality, we assume a unity incident wave
magnitude, thus, u(N+1) and d(0) contains all the diffrac-
tion coefficients for all diffraction orders. Especially, the
(2MyMz +My +Mz + 1)th element and (6MyMz + 2My +
2Mz + 2)th element of u(N+1) are the zero-order reflection
coefficients for y and z components, respectively. Similarly,
the elements in the same positions of d(0) are the zero-order
transmission coefficients for the y and z components.

3 Numerical tests and discussions

3.1 Implementation details

Both the initial SHA formulation and the fast-convergence
formulation were implemented in C language in our tests.
The solver was compiled using Intel C Compiler version
11.0.083 and linked with Intel Math Kernel Library (MKL)
version 10.0.3.020 which contains both optimized Lapack
and ScaLapack for Intel platforms. It was parallelized us-
ing Message Passing Interface (MPI) version 2 and ScaLa-
pack for out-of-core computations. Parallelism in SHA can
be achieved through distributing the independent GEP/SEP
problems for multiple layers among available processors
(quasi-parallelism) and by scaling the GEP/SEP solver it-
self. We note that the scalability of the GEP/SEP part it-
self is poor due to a known issue in the complex eigenvec-
tor calculation subroutine (PZTREVC) in ScaLapack. The
subroutine is parallelized, but also includes significant se-
quential tasks, preventing efficient scaling. The performance
does not scale well on Xeons and Itaniums (with any OS),
as shown in Fig. 4. The picture is slightly better for the Intel
Core i7 processors series. Thus, although the parallel perfor-
mance of our solver scales appropriately for cascaded struc-
tures with a large number of layers (approaching a linear
speedup), further increasing the efficiency and scalability of
GEP/SEP requires substantial work going beyond the scope
of this study.

The compiling and testing environment was dual-CPU
Quad-Core Intel Xeon E5410 2.33 GHz cluster nodes with
16 GB memory and Gigabit Ethernet interconnects. The
typical computation time per wavelength and memory con-
sumption for different numbers of modes is shown in Ta-
ble 1. The numbers, such as 25 × 25, indicate the num-
ber of modes used for y and z directions, namely My and
Mz in the formulation, respectively. We note that the ac-
tual system matrix dimension in the eigenvalue problem is
2(2My + 1)(2Mz + 1) and the matrix is dense.

We note that a lightweight (but fully-functional) version
of an SHA solver for two-dimensional multilayer structures
(1-D metal-dielectric gratings) with a user-friendly interface

Fig. 4 Time number of processors using GEP subroutines in ScaLa-
pack. 25 × 25 modes (matrix dimension is 5202) was used in this test

Table 1 The typical time and memory consumption for different num-
ber of modes

Modes Matrix dimension Memory Time

20 × 20 3362 635 MB 6 min

25 × 25 5202 1.4 GB 20 min

30 × 30 7442 2.8 GB 1.0 h

35 × 35 10082 5.0 GB 2.39 h

40 × 40 13122 8.4 GB 5.2 h

has been staged online by our group and is free to use [40].
The solver uses optical constants linked to [41] and there-
fore can utilize tabulated data for a wide range of dispersive
materials, including metals.

3.2 Validation test

We used the simulation method on a gold nanoantenna ar-
ray designed in [42] as a validation test. A unit cell of the
array is composed of gold nanoparticles with elliptic cylin-
der shapes, as illustrated in Fig. 5(a), and a gap between
the two particles along their major axes. Silica is used as
the substrate. The structure was fabricated and examined
by field emission scanning electron microscopy (FESEM),
and a representative FESEM image is shown in Fig. 5(b).
Although all unit cells in an array have the same design,
each particle randomly deviates from the designed shape to
certain extent. In the sample shown, the major axis of the
nanoparticles ranges from 104 to 118 nm, the minor axis
from 52 to 62 nm, and the gap from 12 to 27 nm. The trans-
mittance and reflectance spectra of the sample was measured
in the visible range with incident light normal to the sample
surface. The incident light, which was illuminated along x

direction, was linearly polarized as either the principal po-
larization, where the electric field is parallel to the major
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Fig. 5 (a) A unit cell of the gold nanoantenna array on the silica sub-
strate; (b) FESEM image of the sample of the gold nanoantenna array

axis, or the secondary polarization, where the electric field is
normal to the major axis. The structural dimensions used in
simulations are as follows: the major axis of the gold cylin-
der is 110 nm, the minor axis is 55 nm, the gap is 17 nm,
the antenna thickness is 40 nm. These values are all within
the range of dimensions obtained from FESEM measure-
ments. The thickness of the antennas, h = 40 nm, the period
along the major axis, ly = 400 nm, and along the minor axis,
lz = 200 nm, were taken from the initial design. The small
size of the metallic nanoparticles and a large electric reso-
nance due to the small gap between two nanoparticles are
among the main challenges of the test structure.

To obtain a good set of reference data, we also simu-
lated the structure using a commercial finite-element method
(FEM) software package, COMSOL Multiphysics, with
3-order elements. The validity of the FEM solution was
verified by using the same model with different levels of
additional meshing refinement and an adaptive solver.

Fig. 6 Comparison of the reflection and transmission spectra obtained
in experiments and simulations using FEM and SHA in two polariza-
tions: (a) principal polarization and (b) secondary polarization

A best-fit Drude–Lorentz model for experimental data of
gold from Johnson and Christy [43] was used in the simula-
tion. A loss factor of 3 was applied to the Drude–Lorentz
model in order to take size effect and the internal grain
structure in the fabricated sample into account [42, 44]. The
Drude–Lorentz model parameters used in this paper can be
found in the online tool, PhotonicsDB, developed by our
group [41]. The simulation results are compared with the
experimental spectra in Fig. 6. The test structure of Fig. 5 re-
veals all typical features of localized plasmonic resonances,
e.g. the spectra show a strong resonance for the principal po-
larization at 660 nm. We can see that our approach converges
well in both principal polarization and secondary polariza-
tion spectra, and the difference among experimental results,
FEM results and SHA results is almost indiscernible.
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Fig. 7 Reflection and transmission spectra near the resonance wave-
length calculated with a different number of spatial harmonics

Fig. 8 Schematic view of gold nano-disk array structure

3.3 Convergence test

In our test, we obverse that the off-resonance portion of the
spectra will converge even using a relatively small number
of spatial harmonics. However, the spectra near the reso-
nance wavelength require a large number of modes in calcu-
lation to converge due to the strong near-field coupling be-
tween the nanoparticles. Figure 7 shows the reflection and
transmission spectra near the resonance wavelength using
the fast-convergence formulation described in Sect. 2.4 with
different numbers of spatial harmonics. We can see both re-
flection and transmission spectra converge uniformly.

In this particular example, there is not much difference in
convergence between a direct application of the initial for-
mulation (30) and the fast-convergence formulation (42). In
order to make the difference more clear, we used another
metal-dielectric nanostructure which is shown in Fig. 8. This
structure has only one layer and has semi-infinite air re-
gions at both ends. Cylindrical gold nano-disks are arranged

Fig. 9 Comparison of the speed of convergence of reflection and trans-
mission spectra obtained in SHA simulations using (a) initial formula-
tion and (b) fast-convergence formulation

in a two-dimensional array which is embedded in a dielec-
tric host with refractive index n = 1.45. The period in the
y direction is ly = 400 nm, and the period in the z direc-
tion is lz = 400 nm. The diameter of each gold nano-disk is
d = 300 nm, and the thickness of the layer is 10 nm. The in-
cident light, which is illuminated along the x direction, was
linearly polarized in either the y or z direction. The struc-
ture is intentionally designed to be symmetric in the y and z

directions in order to be able to use the same modes in both
y and z directions. The large filling factor of the metallic
nano-disks and a broad electric resonance at a wavelength
of about 1 micron are among the most difficult aspects of
this model.

Figure 9 shows the convergence of the solutions for the
gold nano-disk array structure while increasing the number
of modes simultaneously in both the y and z directions using
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the initial formulation (Fig. 9(a)) and fast-convergence for-
mulation (Fig. 9(b)). The FEM results are also included as
a reference. From Fig. 9(a) we can obviously see that when
we have 30 × 30 modes, the spectra matches the FEM re-
sult better than with 40 × 40 modes, in the long wavelength
region, while it has a much worse match in the short wave-
length region. In addition, we can also clearly see that there
is a small feature in the spectra of 30 × 30 modes at around
1100 nm which is an artifact. when we increase the number
of modes, the curve becomes smooth and has a good match
with the FEM results. In contrast, if we calculate using fast-
convergence formulation, all spectra are smooth even when
using less modes, and they approach the FEM reference re-
sult uniformly as we increase modes, as shown in Fig. 9(b).
In summary, the fast-convergence formulation shows a more
uniform convergence. A direct application of the initial for-
mulation is of limited utility to the problem due to the fact
that the convergence is not uniform, and that there may be
artifacts which need a substantial number of spatial modes
to resolve.

4 Conclusion

A second-order formulation of the SHA method for three-
dimensional structures (bi-periodic multilayer structures)
has been presented. The scattering matrix algorithm is used
to cascade multiple layers. We have calculated the trans-
mittance and reflectance spectra of a nanoantenna sample
using SHA, and the results match those obtained from ex-
periments and from finite-element method simulations very
well. A study of the convergence of the initial formulation
and fast-convergence formulation shows that the latter for-
mulation has a more uniform convergence while handling
metal-dielectric structures.
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