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Abstract: We have studied the dispersion relations of multilayers of silver 

and a dye-doped dielectric using four methods: standard effective-medium 

theory (EMT), nonlocal-effect-corrected EMT, nonlinear equations based 

on the eigenmode method, and a spatial harmonic analysis method. We 

compare the validity of these methods and show that metallic losses can be 

greatly compensated by saturated gain. Two realizable applications are also 

proposed. Loss-compensated metal-dielectric multilayers that have 

hyperbolic dispersion relationships are beneficial for numerous applications 

such as subwavelength imaging and quantum optics. 
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1. Introduction 

Scientific interest in metal-dielectric multilayers has increased in recent years, due in part to 

the new and related ideas of metamaterials and transformation optics. Created from extremely 

thin, alternating layers of a metal (with a negative real permittivity) and a dielectric (with a 

positive real permittivity), metal-dielectric multilayer structures can provide truly unique 

optical properties that can be useful for a number of advanced applications and devices. The 

optical properties (permittivity, for instance) of multilayer structures can be strikingly 

different than those of natural materials, including natural crystals. In multilayer systems, we 

can obtain a hyperbolic dispersion relationship in which the permittivity along one axis is 

negative while the permittivities along the other axes are positive [1]. The applications of such 

an unusual material, called a hyperbolic metamaterial or HMM, include negative refraction 

[2], epsilon-near-zero (ENZ) materials [3, 4], superlenses [5, 6] and hyperlenses [7–10], 

#153149 - $15.00 USD Received 19 Aug 2011; revised 9 Nov 2011; accepted 9 Nov 2011; published 23 Nov 2011
(C) 2011 OSA 5 December 2011 / Vol. 19,  No. 25 / OPTICS EXPRESS  25243



quantum optics [11], and many others [12–14]. One significant drawback of a passive optical 

HMM is that the intrinsic loss in the metal always limits the overall functionality [15, 16]. 

This is a fundamental challenge in the applications of HMMs, but it can be overcome by 

including active (gain) media in the system [17–19]. So far, gain media have been 

experimentally incorporated into various kinds of plasmonic and metamaterial systems 

including surface plasmon polaritons [20], localized surface plasmon polaritons [21], 

plasmonic waveguides [22], and negative index materials [18]. Incorporating gain within the 

multilayer system allows for the compensation of the metallic loss [23]. In fact, some 

experiments on metamaterials have even shown complete loss compensation or even 

overcompensation [18]. With gain, then, metal-dielectric HMM applications can be far more 

robust than with passive HMMs. 

In Section 2 we model a metal-dielectric HMM for the case when the dielectric is an 

active medium, and we study the dispersion relationship of such a system. The cross section 

of a binary HMM, which consists of isotropic metal and dielectric layers, is schematically 

shown in Fig. 1. The permittivity and thickness of each layer are denoted respectively as j
ε

and j
δ , where 1j =  for the metal layer and 2j =  for the dielectric layer, and the period of 

the structure is 
1 2

δ δ δ= + . We also define a linearly polarized plane wave with the following 

free-space parameters: wavelength λ , wavenumber 
0

2k π λ= , and wavevector

( )0 0
ˆ ˆcos sink θ θ= +k x y , where a given angle of incidence θ  is aligned with the structure 

( )0 2θ π< < . As discussed above, HMMs made from thin, alternating layers of a metal and 

a dielectric can be considered to be metamaterials as long as their periodicity δ is 

significantly smaller than the free-space wavelength of the incident light ( λ ), or more 

precisely, when 
0

1k δ ≪ . 

 

Fig. 1. Geometry of a metal-dielectric multilayer composite. The permittivities of the metal and 

dielectric layers are denoted respectively as ε1 and ε2, and the thicknesses are δ1 and δ2. All the 

layers are parallel to the x-z plane. 

When studying the dispersion relationships of multilayers, using T-matrices to form a set 

of nonlinear equations (NLE) is a rigorous method, and the resulting solutions are exact [24]. 

A simpler way is to use the standard effective medium theory (denoted as EMT1 in this 

paper). The effective medium theory homogenizes the multilayers, thus giving the effective 

dielectric constants of the medium as a whole. A more advanced EMT method (denoted 

EMT2) [25] takes into account the nonlocal effects that are neglected in EMT1. With regard to 

numerical methods, spatial harmonic analysis (SHA) is a robust method to study periodic 

systems [26, 27]. All the details of the four methods discussed here are given in the 

addendum. We have tested these four different methods to model active HMMs and have 
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compared the results. In Section 3 we consider two realizable examples as possible 

applications of active HMMs: one is a hypergrating [28], and the other is an ENZ material. 

2. Examples and discussion 

In this section we estimate the properties of metal-dielectric multilayers by using the above-

mentioned methods. We take silver as the material in all the metal layers. Note that thin silver 

films tend to form islands below 20 nm on a silica surface, which is not suitable for obtaining 

a multilayer structure. Recent studies have shown that a silver film evaporated on a 1-nm-

thick germanium layer is continuous and smooth even at a 5-nm Ag thickness [29]. In our 

calculations, we used realistic values of the optical properties of the materials; these values 

are taken from experimental results. We take the permittivity of silver from [30], which uses a 

Drude-Lorentz model with 3 Lorentz terms. The parameters are fitted using measured data 

from [31].The loss factor (a multiple of the collision rate in the Drude term) is set to two in 

order to take into account the size-dependent sliver loss [32]. Since annealing can reduce the 

loss of germanium to negligible levels in the red part of the spectrum, which is our region of 

interest, the germanium layer is not modeled in our simulations. For the active dielectric 

medium, we take the gain values extracted from experimentally measured data of an organic 

dye (Rh800) mixed in epoxy [18, 33]. Typically, organic dyes mixed with polymers have high 

gain coefficients and have the advantage that they can be incorporated into any arbitrarily 

shaped spaces [18]. The refractive index of epoxy is 1.65, and the emission peak of Rh800 

occurs at about 720 nm. Because the gain coefficient of a material is proportional to the 

imaginary part of the refractive index, we therefore modeled the active dielectric with a 

complex dielectric function. The imaginary part of the dielectric function is plotted in Fig. 2. 

Note that the real part of the dielectric function is not plotted here since it is dominated by the 

permittivity of the epoxy and is almost constant in this wavelength range. To simplify our 

modeling, we assumed that the active medium was operating in the saturated regime, and we 

hence neglected the time dependence of gain saturation. 

 

Fig. 2. Extracted imaginary part of the dielectric function of dye-doped epoxy. Note that the 

real part of the dielectric function (not shown) is dominated by the permittivity of the epoxy, 

which is about 2.72. 

As an example system, we take a silver-gain multilayer structure consisting of alternating 

20-nm-thick silver layers and 40-nm-thick gain layers. In Fig. 3 we plot the effective 

anisotropic permittivity of the structure calculated from the four methods (EMT1, EMT2, 

NLE, and SHA). The incidence angle (θ) is zero for the plot. Within the plotted wavelength 

range (650 – 800 nm), all four methods show that the multilayer has opposite signs for εx and 

εy, and it therefore exhibits hyperbolic dispersion. 

It is also shown in Fig. 3 that the effective permittivity resulting from NLE and SHA are 

perfectly matched in both the x and y directions. This is not surprising, as both methods are 

aimed at calculating the eigenvalues of the composite layer and differ only in their numerical 

realizations. The results from EMT2 are very close to those values. However, there are 

significant discrepancies between the results from EMT1 and those from the other methods. 

#153149 - $15.00 USD Received 19 Aug 2011; revised 9 Nov 2011; accepted 9 Nov 2011; published 23 Nov 2011
(C) 2011 OSA 5 December 2011 / Vol. 19,  No. 25 / OPTICS EXPRESS  25245



The relative errors are calculated using the results from SHA as the reference (exact value) 

using ( )calc SHA SHA/ 100%ε ε ε− × . Comparing with EMT1, EMT2 is more accurate and has 

lower error over the calculated wavelength range (the EMT2 error is less than 3% in this case). 

We also note that the relative errors of the imaginary parts of the permittivities from both 

EMT1 and EMT2 are higher in the active region, which can be observed from the relative error 

plots in Fig. 3. 

 

Fig. 3. Wavelength dependence of the effective anisotropic permittivity for the silver-gain 

HMM at normal incidence (θ = 0) calculated from EMT1 (dashed-dotted line), EMT2 (dashed 

line), NLE (solid line), and SHA (dotted line). Top left panel: the real part of the effective 

permittivity. Top right: the imaginary part of effective permittivity. Bottom panels: relative 

errors in percent with respect to the SHA results. Note that the results from NLE and SHA are 

coincident, and their curves are overlapping. The real part of permittivity in the y direction 

from EMT2 is overlaps with the NLE and SHA curves (therefore it is obscured by the NLE and 

SHA curves and is not seen in the figure), and the rest of the EMT2 curve partially overlaps 

with the NLE and SHA curves. 

If we take a look at the fundamental mode for a TM-polarized wave propagating in the x 

direction in the structure, the real part of the modal index, which is 
yε , is higher than the 

refractive index of the dielectric in the multilayer. This indicates that the dominant 

propagating mode is indeed a plasmonic mode. The imaginary part of the modal index, which 

has the same sign as yIm( )ε , is negative from 700 nm to 750 nm. Within this range, the 

propagating TM wave is loss-free. However, in the x direction, we can see that the imaginary 

part of xε  stays positive, which means that the loss is not compensated for a TE-polarized 

wave inside the structure. It is important to point out that although the loss is not fully 

compensated in the x direction, it is still lower than it would be without gain. To achieve loss 

compensation in both directions in this type of bi-layer metamaterial, we need an enormously 

large gain coefficient. It is also worth mentioning that the loss might be lower in real 

structures because the active medium within the metal-dielectric multilayer structure will give 

rise to an effective gain that is much higher than its bulk counterpart. The large value of gain 

is due to the local-field enhancement inherent in the plasmonic response of the structure [18]. 

In Fig. 4 we plot the incidence angle-dependent dispersion relationship of the silver-gain 

HMM. The incident wavelength is 720 nm. Here again we see perfect agreement between the 

NLE and SHA results. The results from EMT1 do not show any dependence on the angle of 

incidence. The EMT2 results show that this method can only handle angle-dependent 

problems in the y direction, and it has non-negligible error compared to the NLE or SHA 

results. As shown in Fig. 4, the permittivities in the x and y directions both show variations on 

the order of 1 in this case, which are rather strong changes. Thus, we should use either NLE or 
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SHA to take into account the angular dependence of the permittivity if we are dealing with 

angles away from normal incidence. 

 

Fig. 4. Incidence-angle dependence of the effective anisotropic permittivity for the silver-gain 

HMM at a wavelength of 720 nm calculated from EMT1 (dashed-dotted line), EMT2 (dashed 

line), NLE (solid line), and SHA (dotted line). Top left panel: real part of the effective 

permittivity. Top right: imaginary part of effective permittivity. Bottom panels: relative errors 

in percent with respect to the SHA results. Note that the results from NLE and SHA are 

coincident, and their curves are overlapping. 

 

Fig. 5. Effective anisotropic permittivity for the silver-gain HMM with different metal-layer 

thicknesses at a wavelength of 720 nm at normal incidence (θ = 0) calculated from EMT1 

(dashed-dotted line), EMT2 (dashed line), NLE (solid line), and SHA (dotted line). The volume 

fraction of the metal layer (δ1/δ) is kept constant at 0.5. Top left panel: real part of the effective 

permittivity. Top right: imaginary part of effective permittivity. Bottom panels: relative errors 

in percent with respect to the SHA results. Note that the results from NLE and SHA are 

coincident, and their curves are overlapping. 

Our studies included an analysis of how the effective permittivity changes when varying 

the thicknesses of the metal layers. Figure 5 shows the calculated effective anisotropic 

permittivities when the metal-layer thickness varies from 5 nm to 120 nm. The metal volume 

fraction is kept constant at 0.5 (i.e. δ1 = δ2). From the plotted curves, we can see that the 

results from NLE and SHA again show perfect agreement. The EMT1 method does not have 

any thickness dependence at all, which also could be concluded from its formula. This method 

shows a significant amount of error when the metal-layer thickness is large. For instance, 

when the metal thickness reaches 60 nm (corresponding to a period of 120 nm, i.e. λ/6), the 
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relative error for EMT1 is greater than 50%. The EMT2 method behaves slightly better, but the 

error also becomes non-negligible when the thickness increases. 

We also investigated the calculated effective permittivity as a function of the metal 

volume fraction (δ1/δ). The period (δ) was kept constant at 60 nm in this case, and the results 

are shown in Fig. 6. As before, we again see that the NLE and SHA results match perfectly. 

For EMT1 and EMT2, the results show that, in the x direction, the error increases as the metal 

volume fraction decreases. In the y direction, however, we see the opposite trend. We observe 

that, depending on the application, EMT1 can produce substantial errors in both x and y 

directions of the effective dielectric function. The EMT2 calculation gives more accurate 

results for major applications. The NLE and SHA methods are the most accurate for all the 

cases. 

 

Fig. 6. Effective anisotropic permittivity for the silver-gain HMM with different metal volume 

fractions at a wavelength of 720 nm at normal incidence (θ = 0) calculated from EMT1 

(dashed-dotted line), EMT2 (dashed line), NLE (solid line), and SHA (dotted line). The period 

(δ) is kept constant at 60 nm. Top left panel: real part of the effective permittivity. Top right: 

imaginary part of effective permittivity. Bottom panels: relative errors in percent with respect 

to the SHA results. Note that the results from NLE and SHA are coincident, and their curves 

are overlapping. 

3. Applications 

3.1 Hypergratings 

As shown above, lamellar metal-dielectric composite structures show typical hyperbolic 

dispersion. To utilize the unique properties of this metamaterial, one direct application is to 

use the structure for hypergratings [28]. A hypergrating is a device that combines a diffraction 

grating that can generate large-wavenumber modes and a planar slab of a hyperbolic 

metamaterial that can propagate those waves and let them converge at a subwavelength focal 

spot. A hypergrating is capable of producing subwavelength focal spots in a planar, non-

resonant structure and is not limited to near-field operation. We show here an example of such 

a hypergrating using the lamellar metal-dielectric composite structure described above. The 

HMM slab consists of 30 layers of alternating 5-nm-thick silver layers and 18-nm-thick dye-

doped epoxy layers. The size-dependent sliver loss has been taken into account by setting the 

loss factor to two. 

The effective anisotropic permittivities calculated for this design by NLE and SHA are 

shown in Fig. 7. At a wavelength of 716 nm, the effective permittivity in the x direction is 

about −3.05+0.14i, and in the y direction it is about 3.59−0.049i, according to the SHA 

calculation. The loss has been over-compensated in the y direction and under-compensated in 

the x direction. As a source, we used a 100-nm-thick silver mask with two 20-nm-wide slits 
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spaced 1µm apart on the top of the HMM slab. A plane wave at normal incidence and 

polarized perpendicular to the slits was sent in to the structure from the top. A schematic 

picture of the simulated structure is shown in Fig. 8(a). The electromagnetic field intensity 

map in the x-y cross section of the structure at a wavelength of 716 nm is shown in Fig. 8(b). 

The dashed line in the figure shows the approximate focal plane (345 nm deep into the surface 

of the HMM slab). The field intensity along the dashed line is shown in Fig. 8(c). We can 

clearly see that the electromagnetic field is transmitted through the slits and forms a 

subwavelength focal spot inside the HMM slab. With gain, the full width at half maximum 

(FWHM) of the field intensity on the focal plane is about 43 nm, which is about λ/17. If there 

is no gain in the slab, the intensity at the focus is greatly reduced, and the FWHM of the field 

intensity increases to about 50 nm as indicated by the dashed line in Fig. 8(c). The 

enhancements will be more prominent if a thicker HMM slab is used. Thus, by making the 

HMM structure active, we can improve the focusing performance of the hypergrating. 

 

Fig. 7. Effective anisotropic permittivity calculated from NLE and SHA for a silver-dielectric 

HMM metamaterial with gain (solid line) and without gain (circles). Left panel: real part of 

permittivity. Right panel: imaginary part of permittivity. 

 

Fig. 8. (a) Schematic of the hypergrating structure. (b) Field intensity map plotted in the x-y 

plane at a wavelength of 716 nm with gain. (c) Field intensity plotted at a distance 345 nm into 

the HMM slab with gain (solid line) and without gain (dashed line). The dashed line in (b) 

indicates the position of the cross section of (c). 

3.2 Epsilon-near-zero (ENZ) materials 

Another interesting application of this type of lamellar metal-dielectric composite 

metamaterial is an epsilon-near-zero (ENZ) material. By adjusting the metal and dielectric 

layer thicknesses to a certain ratio, the structure can display a very small real part of 

permittivity. The unique properties of ENZ materials enable exotic light behaviors. These 

materials are the subject of active research both in the linear [3, 4, 34] and nonlinear regimes 

[35–37]. If we again choose a dye-doped dielectric polymer as the dielectric layer and apply 
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the proper level of pumping, it is possible to obtain a loss-free ENZ material whose real and 

imaginary parts of permittivity will both be zero. 

We demonstrate this kind of metamaterial using a lamellar metal-dielectric structure 

consisting of 100 layers of alternating 5-nm-thick silver layers and 45-nm-thick dye-doped 

epoxy layers. As usual, the size-dependent sliver loss has been taken into account by setting 

the loss factor to two. The effective anisotropic permittivities calculated by NLE and SHA are 

shown in Fig. 9. We can clearly see that the real part of the permittivity in the x direction 

crosses zero at a wavelength around 730 nm. Note that the loss in the y direction has been 

over-compensated by the gain, while that in the x direction is under-compensated. In order to 

have a better understanding of the performance of the metamaterial, we simulated the 

structure using SHA with a plane wave incident in the y direction. In this case, the electric 

field will “feel” the permittivity in the x direction, so at a wavelength around 730 nm, it will 

“feel” zero permittivity. The transmittance, reflectance, and absorptance spectra calculated by 

SHA for this scenario are shown in Fig. 10(a). 

Figure 10(b) shows the electric-field distribution along the propagation direction (from left 

to right) at a wavelength of 729 nm. Figure 10(c) shows the corresponding phase for the 

electric field. At this wavelength, the effective permittivity in the x direction is about 

0.02+0.04i with gain and 0.02+0.07i without gain, according to the SHA calculation. Inside 

the multilayer slab, the phase of the electromagnetic field changes much more slowly inside 

the slab than outside the slab for several wavelengths. Note that inside an ideal ENZ material, 

the phase should be preserved, however, due to the residue of the effective permittivity (both 

real part and imaginary part), a small phase change still occurs. In addition, the 

homogenization process does not work well for the regions very close to the interface, and 

thus the phase changes more rapidly in those regions even though they are still inside the ENZ 

slab. Without gain (shown in the dashed lines of Fig. 10), the phase change slows down inside 

the ENZ, but very little intensity reaches the output. By introducing gain into the ENZ slab, 

the output intensity is 25 times stronger than in the no-gain case; moreover, the phase change 

is much smaller. Thus, by making the ENZ slab active, we can greatly increase the 

performance of the system. 

 

Fig. 9. Effective permittivity calculated from NLE and SHA for the silver-dielectric ENZ 

metamaterial with gain (solid line) and without gain (circles). (a) Real part and (b) imaginary 

part. 
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Fig. 10. (a) Transmittance, reflectance, and absorptance spectra calculated by SHA for a 100-

layer silver-gain HMM with a silver-layer thickness of 5 nm and a gain-layer thickness of 45 

nm. (b) Electric field and (c) the phase of the electric field plotted along the propagation 

direction at a wavelength of 729 nm with gain (solid line) and without gain (dashed line). 

4. Summary 

In this paper, we have studied the dispersion relationships of metal-dielectric multilayer 

structures. We have focused on bi-layer structures of silver and a dye-doped dielectric 

polymer, and we studied the effective optical properties of the structure using the standard 

effective medium theory (EMT1) method, an angular-dependent nonlocal-effect-corrected 

EMT method (EMT2), a nonlinear equation-based eigenmode method (NLE), and a spatial 

harmonic analysis method (SHA). We showed that the effective permittivity resulting from 

NLE and SHA calculations are perfectly matched in both the x and y directions of the 

structure and for all cases we considered. Since both of these methods focus on calculating the 

eigenvalues of the composite layer and differ only in their numerical realizations, they give 

highly accurate results provided that a sufficiently large system matrix is used for 

diagonalization in SHA [26]. 

The results from the EMT2 method are very close to those of NLE and SHA for most 

cases, and for some applications EMT2 has error values that are less than 3%. Overall, though, 

EMT2 does show some observable error, and with oblique incidence, EMT2 exhibits 

significant error values. The method also gives non-negligible error values when the layers 

are thick or when the metal-to-dielectric thickness ratio is large. 

There are significant discrepancies between the results from the simple EMT1 method and 

those from the other methods. We observed that, depending on the application, EMT1 can 

produce substantial errors in both the active and lossy directions of the effective dielectric 

function. Since EMT1 does not exhibit any dependence on the layer thicknesses at all, it 
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shows a significant amount of error when the thicknesses are large. For instance, when the 

metal thickness is about λ/12, the relative error for EMT1 is greater than 50%. In addition, the 

imaginary parts of the permittivities from both EMT1 and EMT2 are higher in the active 

region of the spectrum. 

Our study also shows that when the dye is completely saturated, the silver-gain binary 

lamellar structure becomes loss-free in the direction perpendicular to the layers (the x 

direction in our definition). However, it is much more difficult to compensate the metal loss in 

the direction parallel to the layers (the y direction in our definition). Doing so requires a huge 

gain coefficient in the active medium, which is not easy to obtain in real experiments. 

Multilayer structures that exhibit hyperbolic dispersion are desirable for a number of 

applications, including superlenses, hyperlenses and quantum optical devices. In this work, 

we have shown two realizable examples of applications of hyperbolic, multilayer structures 

with gain, i.e., a hypergrating and an ENZ metamaterial. We compared the behaviors of these 

devices with and without gain, and we showed that by introducing gain into such structures, 

the performance will improve greatly. 

5. Addendum 

In this section we show the details of the four different methods that we used to model a 

binary planar HMM, i.e., a lamellar metal-dielectric composite consisting of only two 

different types of isotropic layers. The geometry is defined in Fig. 1. 

5.1 Nonlinear equation (NLE) method 

It is known that the permittivity values calculated from the standard effective medium theory 

(EMT) can deviate from the exact solutions [6, 25]. To obtain a rigorous analytical solution 

for our study, we used the T-matrix approach [38]. (In contrast with [38], the time-dependent 

factor ( )exp tιω−  is taken here). We arrive at nonlinear equations for the transverse electric 

field (TE) polarization in which the incident electric field only has a z component 

 

( ) ( ) ( ) ( ) ( )1 21
2 2 1 1 2 2 1 12

2 1

cosh cosh sinh sinh cosh 2
g g

g g g g q
g g

δ δ δ δ αδ ι π
 

+ + = + 
  (1) 

and for the transverse magnetic field (TM) polarization in which the incident magnetic field 

only has a z component 

 

( ) ( ) ( ) ( ) ( )1 2 2 11
2 2 1 1 2 2 1 12

2 1 1 2

cosh cosh sinh sinh cosh 2 ,
g g

g g g g q
g g

ε ε
δ δ δ δ αδ ι π

ε ε
 

+ + = + 
  (2) 

where g1 and g2 are the wavenumbers in y direction for layer 1 and layer 2, respectively. 

For the TE polarization 

 

2 2

1 x,TE 1 0

2 2

2 x,TE 2 0 ,

g k k

g k k

ε

ε

= −

= −
 (3) 

and for the TM polarization 

 

2 2

1 x,TM 1 0

2 2

2 x,TM 2 0 ,

g k k

g k k

ε

ε

= −

= −
 (4) 

where q∈ ℤ , 1ι = − , and 0 sinkα ι θ= . 
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Since the eigenvalue kx in the x direction is preserved across all interfaces, the effective 

permittivities are 
2 2

x,TE 0x
k kε =ɶ  and 

2 2

x,TM 0y
k kε =ɶ , where x,TEk and x,TMk  are the eigenvalues 

that can be obtained by solving the system of non-linear equations given in Eqs. (1) and (2). 

5.2 Effective medium theory (EMT1) method 

To understand the electromagnetic properties of metal-dielectric multilayers, the standard 

EMT is a simple and useful method. We denote this method as EMT1. A plane wave inside an 

effective medium obeys the standard dispersion relation 

 

22
y 2x

0

y x

,
kk

k
ε ε

+ =
 (5) 

with 0 sin 2
y

k k qθ π δ= + , and where q∈ ℤ  is the diffraction order. 

We now expand ( )cosh j jg δ and ( )sinh j jg δ , 1, 2j =  in (1) for 1
j j

g δ ≪ , and, after 

dividing both parts by 2δ  and keeping the results up to quadratic terms, we arrive at 

 

( ) ( )22 2 2 2 2 22 1
1 2 1 2

1 2

1 1 .
y

g r g r r r g g k
ε ε
ε ε

 
+ − + − + = − 

   (6) 

Here 1r δ δ=  is the volume fraction of the metal layer. Then, using 
2 2 2

x 0j j
g k kε= − , 

1, 2j =  and comparing the result to Eq. (5), we have 
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1
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x

2

y2 1 1 2

x 1 2 0
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1
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k r r k

r r
ε

ε

ε ε
ε ε

−
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�������

 (7) 

Hence, the effective permittivities in the directions parallel ( xε ) and perpendicular ( y
ε ) to 

the thickness direction are 

 

( )
( )

x 1 2

1 1 1

y 1 2

1

1 .

r r

r r

ε ε ε

ε ε ε− − −

= + −

= + −
 (8) 

It is obvious that Eq. (8) neglects any angular dependence and is denoted here as EMT1. 

The beauty of EMT1 is that it is simple and can be easily used for initial designs. For example, 

supposing that we know the desired effective permittivity components xε  and y
ε , we can 

obtain the permittivities of the constituent materials in the metamaterial by using 

 

( ) ( )( )

( ) ( )( )
( )

1

2

4 1 2
,

2

4 1 2
.

2 1

x y x y y x y y

x y x y y x y y

r r r

r

r r r

r

ε ε ε ε ε ε ε ε
ε

ε ε ε ε ε ε ε ε
ε

− − − + − +
=

+ ± − − + − +
=

−

∓

 (9) 

In principle, both solutions can be used to form a multilayer structure having the 

designated effective permittivity. In practice, one should also take into account the availability 

of the elemental constituent materials in nature. 

5.3 Angular-dependent effective medium theory (EMT2) method 

We can also consider a modification to the standard EMT method that takes non-local effects 

into account. We denote this method as EMT2. We begin with the set of equations [25] 
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which account for non-local effects including angular dependence. In Eq. (10), 

 

( )22 2 21
x 1 2 x12

2 2

y x 2 1 1 2 2

y x 1 2 y x2 2

1 2

1 ( )

( ) .

r rδ ε ε ε

ε ε
α ε ε ε ε

ε ε
− −

∆ = − −

 
∆ = ∆ − +  

   (11) 

The rest of the analysis closely follows that of the EMT1 method and is not repeated here. 

5.4 Spatial harmonic analysis (SHA) method 

The spatial harmonic analysis (SHA) method, also known as the Fourier modal method 

(FMM) or rigorous coupled wave analysis (RCWA), is one of the most widely used methods 

based on differential equations for studying the diffraction characteristics of electromagnetic 

waves in periodic structures. The advantages of SHA are that it is a non-iterative and mesh-

free technique for obtaining the exact solution to Maxwell’s equations using the Bloch-

Floquet formalism. Recent publications show that the SHA method has been successfully 

used to simulate plasmonic structures and metamaterials [26, 27, 39]. We modeled the 

multilayer structure with a two-dimensional SHA in a single layer (each layer in the structure 

is a segment in the model) with arbitrary thickness, and we extracted the dominant eigenmode 

obtained by SHA. We get the effective dielectric permittivity from the wavevector of the 

eigenmode. Note that the two-dimensional version of SHA is staged online and is free for 

public access [40]. 
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