














 

constants being much higher than that of the incident wave (we normalized all wave vectors 
to the wave vector of the incident light, meaning that the square shouldn’t be more than a 
couple orders of magnitude larger than a unit square), or (ii) propagate the modes with sub-
stantial attenuation (i.e., with large imaginary parts of their propagation constants). 

Next, the rectangular domain is split in half (in a real situation, any ratio may be used) 
over vertical and horizontal dimensions and use (24) again in order to locate “non-empty” 
(containing zeros) quadrants. Such iterations (splitting of zero-containing quadrants in four 
parts) are repeated until the resulting quadrants are small enough - meaning that zeros have 
been located close enough to ensure convergence of a given root-polishing algorithm. This 
process is schematically represented in Fig. 2, where crosses correspond to the values of xk  

(eigenvalues) of a binary periodic structure. 
To test our approach, we consider a layer consisting of only two elemental materials (see 

Fig. 1(b)). This binary structure (Material 1) is composed of a gain-doped silica layer (with 
thickness 1 45 nmδ =  and complex dielectric permittivity 1 2.7224 0.029615ε ι= − ), and a 

layer of silver with 2 5nmδ =  and 2 26.079 0.882ε ι= − + . The incident p-polarized light of a 

wavelength 740nmλ =  enters at the incident angle, 3θ π= , as shown in Fig. 1. 

For this problem, the nonlinear equation to be solved is given by expression (21). We seek 
to get all xk  in a rectangle with the lower left corner being at 100 100ι− − , and the upper 

right corner at 100 100ι+ . 
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Fig. 2. Schematic representation of the Lehmer-Schur algorithm for Material 1. The red crosses 
( × ) correspond to the values of kx detected though several consecutive splittings; the black 
crosses ( × ) indicate the remaining values of kx yet to be found. 

Several consecutive splittings of the initial search area (a red rectangle) are shown in Fig. 
2 by blue, orange, and black lines. The final zero-containing quadrants are shown as filled 
yellow rectangles. Overall, this is simply a generalization of the dichotomy method for the 
complex plane. As calculations for each quadrant are completely independent from each oth-
er, these calculations can be done in parallel. 

It is convenient to use (25) in the following formulation: 

 ( )( )1
arg ,

2
f z Z P

π ΓΔ = −   
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here ( )( )arg f zΓΔ  is a change of argument of function ( )f z  along the closed contour Γ . In 

this case, it is not required to calculate the derivatives of the function. However, troubles arise 
because available functions for calculating arguments of a complex number are well defined 

only on one of the branches (usually the principal one). In order to calculate ( )( )arg f zΓΔ , 

Γ  is split into relatively small steps, and is checked whether arguments on every step change 
by a small value with respect to 2π . If this change is greater than some threshold value, let's 
call it argument smoothness tolerance (say, 0.1), then we split our small interval in half and 
repeat calculation of the argument for both parts. Iterations are continued until this branch 
point is located, or it is understood that there is no branch point on this interval. At this point, 

( )( )arg f z  has a jump of 2π , so we can correct our calculations of the argument function, 

which follows the principal branch only, by adding this jump to the sum of argument changes. 
It should be noted that instead of the argument function, the complex logarithm function can 
be used. 

During application of the Lehmer-Schur algorithm, we should watch closely for the con-
servation of the total number of zeros. If the total number of zeros is not conserved, it usually 
means that there is a zero on one of the boundaries and this boundary must be moved. After 
the zeros are separated, the hybrid Powell algorithm (a modification of 2D Newton's algo-
rithm) [36] is used in order to obtain every zero with a desired accuracy. Currently, an im-
plementation provided by the GNU Scientific Library [37] is used. 

3.1. Accuracy of the proposed algorithm 
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Fig. 3. Relative errors in real (a) and imaginary (b) parts of the propagating constant for the 
lowest eigenmode as a function of the incident wavelength λ obtained for test Material 2. 

As a reference point, we have used the simulation results from 2D spatial harmonics analysis 
(SHA), proposed in [28] and validated in [27, 38] (2D-case) and in [27] (3D-case). The accu-
racy of the SHA method depends on the total number of Fourier modes. In the reference runs, 
300 modes were taken. This number of modes is, with confidence, beyond the limit of con-
vergence of the algorithm. This number is so high because the usual configuration of current 
nanostructures involves a complex piecewise constant function for the dielectric permittivity, 
which results in a slow convergence of the Fourier series. 

We compared the simulation results of the lowest propagating mode ( xk  has the smallest 

imaginary value) as a function of the incident light’s wavelength. Results are shown in Fig. 
3(a) and 3(b), where the binary periodic structure (Material 2) had the following configura-
tion: layer of silica doped with gain inclusions of thickness 1 20nmδ = , and a layer of silver 

of thickness 2 20 nmδ = , incident angle 0θ = . The optical constants of silver and doped 

silica were kept the same as in Material 1. 
We have used the following parameters of the algorithm: zeros tuning was started after the 

size of all the quadrants in the Lehmer-Schur algorithm smaller than 310−  was achieved, ac-
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curacy of the zero tuning was 1610−  (the absolute value of the function at the zero-point). It 
can be seen that the same (up to the round-off error) results for 300 harmonics in SHA have 
been obtained. These results are very promising, taking into account the performance tests 
discussed later. Here, it should also be stressed that the proposed algorithm takes into account 
the piecewise character of the structure by using the natural proper functions. This means that 
the exact eigenvalues are obtained up to the accuracy of calculated zeros, which is limited 
from below by a round-off error of a given floating-point representation. 

In Fig. 4, we demonstrate that the propagation constants ( xk ) from the MEP-SHA method 

converge to the results of the proposed method after increasing the number of harmonics. In 
this case (Material 3) the binary structure had the following composition: silica layer of thick-
ness 1 20nmδ =  and 1 2.723ε = , and a layer of silver of thickness 2 20 nmδ =  and 

2 25.274 0.85436ε ι= − + , and the wavelength of normally incident light is 730 nm. Even in 

our quite simple example, only after taking into account at least 300 Fourier modes the MEP-
SHA was capable of computing almost the same numerically exact (up to a floating-point 
representation accuracy) eigenvalues as the proposed method. 
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Fig. 4. Convergence of the SHA method (non-circular markers of different color) with increase 
of the total number of modes to the results of the new method (blue circles) simulated for test 
Material 3. The results for SHA with 300 modes (brown triangles) and for proposed solver 
(blue circles) are indiscernible. 

3.2. Parallelization of the algorithm 

After each iteration of the Lehmer-Schur process, a set of zero-containing quadrants is found. 
Every such quadrant is processed independently. Thus, we have a natural, parallel part of the 
algorithm. Another important part is the final tuning of zeros with Powell's algorithm, where 
each zero is independent. However, as we know that this part of the entire algorithm takes a 
small fraction of the total computation time, it is much more beneficial to optimize the calcu-

lation of ( )( )arg f x  in the Lehmer-Schur process. 

Currently, only the simplest Lehmer-Schur parallelization described above has been im-
plemented. The shared memory model with the Linux implementation of POSIX threads as a 
parallelization mechanism is used. 
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For our current requirements (simulation of metasurfaces), we are satisfied with the 
present performance, which is more than one order of magnitude faster than the traditional, 
MEP-based SHA. The comparison of the performances of SHA against the proposed algo-
rithm is shown in Fig. 5. As one can see from Fig. 5(a), scalability of the proposed algorithm 
is better than in the case of SHA, but still far from linear. The total performance is much bet-
ter, which is demonstrated in Fig. 5(b). Moreover, in order to obtain comparable accuracy in 
MEP-based SHA (even for the lowest evanescent modes), one must use hundreds of modes. 

For the proposed approach, we have used a freely available gcc compiler and standard li-
braries, while for the SHA code we have used a highly optimized Intel compiler together with 
a specialized Intel Math Kernel Library. So we still have a room for further acceleration of 
the new algorithm implementation. Hence, the current speed up numbers at Fig. 5(b) can be 
considered as minimal values. All the performance tests have been performed on Intel Xeon 
5450 CPU operating at 3.0 GHz under CentOS 5.6 Linux. 

4. Conclusion 

We propose an algorithm for simulating periodic metasurfaces and cascaded metamaterial 
structures. The current formalism is developed for 2D-geometry, but can be generalized for 
3D-case without any difficulties. We decided to limit ourselves to the 2D-case in order to 
keep all derivations relatively simple and clear for understanding. The proposed algorithm 
was implemented, and its accuracy and performance have been thoroughly tested. The prelim-
inary results are truly encouraging - both in terms of accuracy and speed. Even the proof-of-
concept, pilot version of the proposed algorithm is significantly (at least one order of magni-
tude) faster than the traditional, MEP-based implementation of SHA. 
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Fig. 5. (a) Scaling of the current implementation of the algorithm. (b) Computation time of the 
new solver and the MEP-based SHA solver vs. number of modes (N). 

We must point out that even the simplest case of a slit in a metal film requires using at 
least 80 modes in the MEP-based SHA (or similar algorithms) in order to get any reasonable 
correspondence with experimental results [39]. In this case, our method offers more than one 
order-of-magnitude less time. At the same time, more involved configurations may require 
even more modes, as the main problem of the Fourier basis in MEP-based approaches is poor 
representation of piecewise constant distribution of dielectric constants in the media, which 
leads to slow convergence of higher frequency modes. This means that the further from the 
origin we go in the spatial spectrum, the more significant is the error (see Fig. 4). In other 
words, higher frequency modes obtained by SHA have a tendency to deviate from their exact 
values stronger than lower frequency modes. In contrast with the MEP-based approaches, the 
proposed method includes naturally the sharp boundaries. As a result, all calculated propaga-
tion constants are exact up to a desired level of accuracy, which is limited from below by a 
round-off error of floating-point representation. 

One may speculate that the non-propagating modes are not that important. However, cur-
rent metasurfaces and metamaterials operate mostly due to near-field coupling effects. In the 
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case of cascaded layers (which is natural for construction of bulk metamaterials) the near-
field interaction becomes crucial. As it has already been demonstrated in [28], the signific-
ance of lower evanescent modes in cascaded structures increases dramatically with respect to 
single-layer case, and is still important even in thin symmetric structures on a substrate [40]. 
As a result, accurate calculation of the evanscent modes becomes absolutely necessary. This 
leads to an increasing number of modes in MEP-based methods, with N reaching several hun-
dred modes. In this case, usage of our method is a must, because of several orders of magni-
tude advantage in performance. 

As the number of required operations is dramatically decreased, the proposed solver de-
monstrates somewhat weak scalability, which is still better than the scalability of MEP-based 
methods. However, due to the exceptional speed enhancement of our new solver, even its 
current, non-optimal implementation exhibits very good performance. The solver already 
allows for fast global optimization of modern periodic metamaterials and metasurfaces by 
using a conventional, four-core desktop computer. 

We truly believe that the proposed solver is a key to both fast computation of periodic na-
no-structures on conventional personal computers and feasible application of the optimization 
algorithms, which requires many repeating calculations of the given structure. Future work 
will include the implementation of the proposed algorithm into our free, in-the-cloud simula-
tion tool [38], which currently employs a conventional, MEP-based version of 2D SHA. 
Speed-up techniques for spectral and parametric sweeps will also receive our special atten-
tion. 
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