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Abstract: Finding the wavevectors (eigenvalues) and wavefronts (eigen-
vectors) in nanostructured metasurfaces is cast as a problem of finding the 
complex roots of a non-linear equation. A new algorithm is introduced for 
solving this problem; example eigenvalues are obtained and compared 
against the results from a popular, yet much more computationally expen-
sive method built on a matrix eigenvalue problem. In contrast to the con-
ventional solvers, the proposed method always returns a set of ‘exact’ indi-
vidual eigenvalues. First, by using the Lehmer-Schur algorithm, we isolate 
individual complex roots from each other, then use a zero-polishing method 
applied at the very final stage of ultimate eigenvalue localization. Excep-
tional computational performance, scalability, and accuracy are demonstrat-
ed. 
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1. Introduction 

Fabricating a lattice of direct or inverted nanoantennas by creating nanoscale perforations in a 
subwavelength-thin metal film [1–8] is a practical way of realizing working photonic devices 
built on the concept of the generalized Snell’s law [1, 5, 6]. Using such ultra-thin metasurfac-
es for mimicking an ideal, continuous, and surface-confined phase gradient is always some-
what inexact; the lattice of individual structural units provides only an approximation (with 
discrete lateral distribution of finite phase steps) needed to generate a desired wavefront of the 
scattered cross-polarized light. Moreover, the nanoantenna-based metasurfaces can generate 
an additional, undesired scattered signal aligned with the incident polarization [1–6]. None-
theless, this most general approach to creating 3D beam-shaping devices (lenses, axicons, 
phase plates, etc) may still be promising, provided that the designed functionality and features 
are beyond our reach through other means. Introduction of elemental nanostructures that sup-
port localized polaritonic modes (e.g., the conventional or Babinet-inverted plasmonic v-
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shape antennas and optical metamagnetics arranged of periodic coupled metal nanostrips) 
results in substantially stronger, sometimes exotic optical responses [6–10]. 

Even in a simple practical focusing device – plasmonic metal slit lenses [9, 10], which 
consist of a number of short, metal-insulator-metal (MIM) waveguides, with width-adjustable 
effective propagation constants - the resulting electromagnetic modes are much more compli-
cated than in periodic dielectric lattices. In such devices, the arrays of MIM waveguides are 
designed to generate the combined transmitted and reflected wavefronts, which propagate 
either out of the surface or into the substrate. Along with the focusing of incident light, the 
nanoslit metal lenses also generate surface modes on the lens interfaces and inside the slits. 
The combination of those effects complicates the theoretical and numerical analysis of such 
structures, as the coupling between the individual scattering elements (slits) and all the above 
modes must be taken into account. 

One of the most popular methods for solving the general linear scattering problem for a 
periodic array of elemental sub-wavelength-scale structures is the Fourier Mode Matching, 
FMM (also known as the Rigorous Coupled Waves Analysis, RCWA, and the Spatial Har-
monic Analysis, SHA) method [11–28]. Simply stated, by using the FMM method, one turns 
the wave equation inside the given planar metasurfaces into an eigenvalue problem and tries 
to get the possible wavefronts (eigenvectors) and propagation constants (eigenvalues). The 
solution is solely built on a set of material and geometrical properties which are preserved by 
translation along the array periodicity directions normal to the metasurface boundary. The 
convenience of using the Fourier basis implies the truncation of the entire set of eigenmodes, 
and requires expensive, poorly-scalable numerical solution of a matrix eigenvalue problem. 
Moreover, the usually convenient Fourier basis is not a good fit for the particular purpose of 
approximating the distribution of dielectric constants within a given structure, which are dis-
continuous within the structure. For this reason, not only the numerical accuracy of compu-
ting each mode depends substantially on the total amount of modes taken into account [27], 
but the appearance of polaritonic (plasmonic or phonic) modes requires a specific, fast-
converging formulation of the matrix eigenvalue problem in hand. 

The approach described in this paper provides a means to solve the eigenvalue problem 
for a realistic subwavelength-patterned cascaded multilayer structure, and therefore calcula-
tion of the complex scattering coefficients. The development of this approach is motivated by 
our previous theoretical, numerical, and experimental studies of angular dependences of ref-
lectance and transmission of plasmonic metasurfaces [6]. Those initial numerical experiments 
provided us with detailed information about the overall performance and scalability of our 2D 
and 3D SHA solver built on the standard, scalable linear algebra libraries [27]. Brief analysis 
of those numerical experiments is presented in [27], which describes the theoretical treatment 
of the proposed approach. Instead of solving an approximate (truncated) matrix eigenvalue 
problem (MEP), this paper is built on finding complex roots of an equivalent, yet exact non-
linear equation (NLE) for a given number of the same eigenvalues. 

There have been many studies of the conventional single-periodic or double-periodic 
MEP-based methods, including the reflection and transmission of cross-gratings and metasur-
faces [6, 10, 27]. Discussions of the NLE equivalents are much fewer and date back to 
layered media classics such as Rytov and Yeh et al. [29, 30]. It is the effective mode indices 
that are of prime interest here. Addressing the question of how they couple to external fields 
deserves a separate publication. For simplicity, we choose to test our approach with a single-
period structure. The initial development of the related methods built on MEP [31] was done 
by using the Fourier expansion based on the lattice period to approximate individual natural 
wavefronts. With this approach, the known structure of the wavefront inside individual layers 
is not taken into account exactly, and hence the problem becomes similar to any boundary-
value problem reformulated in terms of a convenient orthogonal basis in space. The NLE 
adopted in the paper is derived from a boundary-value problem, which is extensively used to 
calculate the propagation properties of lamellar structures [32]. For different values of the in-
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plane wave vector kx, the equation for a transverse field is formulated independently for each 
layer of a given unpatterned lamellar structure. Then, the system of equations for adjacent 
layers is solved by expanding the fields in each layer in terms of plane waves with the corres-
ponding perpendicular wave vector ky and by applying appropriate electromagnetic boundary 
conditions at the interfaces. Adding the periodic Bloch-Flouquet boundary conditions couples 
the propagation constant values kx along the lamellar interfaces, leading to a non-linear equa-
tion. Hence, our method deals with a set of proper wavefronts (eigenvectors) moving syn-
chronously along the interfaces of a given lamellar structure with a corresponding propaga-
tion constant (eigenvalue). Our method uses natural, most efficient, piece-wise continuous 
basis functions or wavefronts. These functions behave as smooth functions within each layer, 
and as continuous functions at the interfaces. 

The remaining outline of our text is arranged as follows: Section II casts the Maxwell curl 
equations in a transverse field representation for p- and s-polarized incidence. The most gen-
eral electromagnetic modes are defined in each layer, ignoring its boundaries. These fields are 
used (i) to obtain a set of synchronous wavefronts, propagating in the x-direction as a general 
plane wave, and (ii) to form a non-linear equation for the eigenvalues in terms of the period, 
material arrangement, angle of incidence, and the free-space wavelength. Section III describes 
how the NLE is solved, using the Lehmer-Schur algorithm [33]. A brief account of some im-
portant numerical benchmarks is also given in Section III, with particular emphasis on the 
individual eigenvalue accuracy and parallelization properties. 

2. Physical fundamentals 

The formulation of the proposed method for bi-periodic structures is quite involved. For the 
sake of brevity in this paper, we use a simplified formulation relevant to single-periodic struc-
tures for in-plane oblique incidence with p- or s-polarized light. The complete formulation for 
bi-periodic 3D structures for arbitrary incidence will be published elsewhere. 
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Fig. 1. 2D cross-sections of single-periodic planar lamellar structure, (a) with s different layers 
and (b) with two layers (a binary medium). 

We consider a 2D cross-section of a single-periodic layered medium (with period δ  
along the y-direction). As we take a p-polarized plane wave incident at angle θ  to the x -
direction, a single component of the magnetic field ( ˆh=H z ) sufficiently describes the prop-
agation of light through the structure. The structure starts at 0 0y = . Every ith layer is defined 

by its dielectric constant iε  and position iy  of its boundary (see Fig. 1). 

Using free-space wavelength λ  as a geometrical scale reference, it is convenient to re-
normalize coordinates with a free-space wavenumber, 0 2k π λ= , 
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 0 0 0, , ,x k x y k y k δ δ→ → →     (1) 

and as in the optical range, 1μ ≡ , a p-polarized plane wave in ith layer ( 1,i s= ) is given by, 

 ( ) x, ; ,ig y k x t
i ih x y t a e e eι ιω± ±± ± −=  (2) 

here 1ι = − , 0k cω =  and c  are respectively the angular frequency and the speed of light. 

Plus and minus signs correspond to forward and backward propagating modes. Due to norma-
lization (1), ig  and xk  imply dimensionless wavenumbers. We also use a normalized disper-

sion law, and include ι  in the definition of the y-component of wave vector, 

 2 2
x .i ig k ε= −  (3) 

Then, we take the Maxwell curl equations, 0 t hμ∇× = − ∂E , ( )0 tε ε∇× = ∂H E , to couple 

the fields, and to define the boundary conditions (BC) at ith interface, 

 ( ) ( )1 1 ,
i iyi i i i y

h h h h+
− +

+
+ −+=+   

 ( ) ( )1 11 1 ,
i i

i i i ii iy i yig gh h h hγ γ + + +
+ − + −

+ −=−  (4) 

where 1
i iγ ε −=  is the isotropic homogeneous impermittivity of ith layer. Since the structure is 

periodic, i.e. i i sγ γ += , we also take into account the Bloch periodic boundary conditions 

 ( ) ( ) .si i i s s i i si i ih h h h e h h h h eαδ αδ+ − + − − + − + − −
+ ++ +=+ = + − −   ,  (5) 

2.1. Systems of equations 

We drop the monochromatic factor te ιω−  in (2), and write the BC (4) in a matrix-vector form, 

 , 1 1, 1,i i i i i i i i+ + +=m d a m d a  (6) 

where ( )T
,x xk x k x

i i ia e a eι ι−+ −=a , ( ), ex a ,i gp dj i j i j ig y g y = − d , and matrix im and its exact 

inverse 1
i
−m  are given by , ; then, from 

(6), we obtain a recurrence relation, 

 1,i i i+=a t a  (7) 

where it  is defined by 1 1
, 1 1,i i i i i i i

− −
+ +=t d m m d . 

We stress that we can introduce it  only if matrices ,i id  and im  are both nonsingular, 

which immediately yields the following condition, 

 0.ig ≠  (8) 

For the number of layers s and period syδ = , (for 0 0y = ), the Bloch periodic boundary 

conditions (5) imply that i s ih h eαδ± ±
+ = , and applying (4) at the sy -boundary we obtain 

 1 1
, 1, 1 1 0 ,s s s s eαδ− −= d m m ada  (9) 

with sinα ι θ=  being defined for a given angle of incidence θ . 
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We then use ( )diag 1,1=i , with the complete chain of equations for ia , to rewrite the pe-

riodicity equation, as 

 1 1,=a ta  (10) 

where 
1

s

i
i=

= ∏t t , with 1 1
, 1s s ss eαδ− −= d m mt , as 1,0 =d i . 

Finally, we arrive at a homogeneous system of equations for 1a , 

 ( ) 1 .− =t i a 0  (11) 

As (11) is the eigenproblem for 1a , where the eigenvalue is equal to 1, the homogeneous 

system (11) has nontrivial solutions iff 0− =t i , which results in the following characteristic 

equation: 

 ( )1 Tr 0.− + =t t  (12) 

Moreover, as we have 2 1s +  unknowns ( 2s  of ia± , and a single xk , because each ig  can 

be expressed through xk  and iε  using the dispersion relation (3)), then the characteristic Eq. 

(12), together with 2 Eqs. (4) at each of s boundaries give us closure. 

2.2. Properties of matrix t  

First, we calculate the determinant of matrix it  for , using (7) 

 ( )1 11
, 1 1, 1 1,i i s i i i i i i i ig gγ γ− −−

+ + + += =t d m m d  (13) 

with a special case for st  from (10), 

 
1 1 2 1

, 1 e e .s s s s
n n

g

g
αδ αδ γ

γ
− −= =t d m m i  (14) 

Using the definition of t  and Eqs. (13) and (14) we obtain 

 2e .αδ=t  (15) 

Then, (15) simplifies (12), providing the following equation, 

  (16) 

From (16), it follows that only the diagonal elements of t  are important, so we could con-
sider the following matrix 

 .
s

i i i s s
i

−
− −

+
=

 Δ Δ 
 
∏

1
1 1

1 1
1

=K m m m m  (17) 

Here ( )diag e ,ei i i ig g
i

δ δ−Δ =  and 1i i iy yδ −= − , is the thickness of ith layer. Again we note 

that dependence on xk  is already included in ig  through (3). The characteristic Eq. (12) then 

takes the following simple form, 

  (18) 
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2.3. Binary medium 

An example configuration for a binary single-periodic 2D structure is depicted in Fig. 1(b). 
The expression for K  is given by 

 1 1
1 1 2 2 2 1,− −= Δ Δm m m mK  (19) 

where only the diagonal terms are of importance. Hence, by using k-normalized parameteriza-

tion ( i i igδ δ=  and i i igγ γ= ), we obtain the trace terms from (19) 

 ( ) ( )
1

2 2
11 1 2 1 2

1 2

2 2e
e e ,

4

δ
δ δγ γ γ γ

γ γ
− = + − − 


    

 
K   

 ( ) ( )
1

2 2
2 2

22 2 1 21
1 2

e
e e .

4

δ
δ δγ γ γ γ

γ γ

−
− = − − +


    

 
K  (20) 

Accordingly, the nonlinear Eq. (20) corresponds to the known result [34] 

  (21) 

Equation (21) is the main equation, which we use for testing the proposed method in our cus-
tom accuracy and performance tests. 

Once we take 0α =  (normal incidence) we obtain, 

  (22) 

matching the classical Rytov’s result [29]. 

3. New algorithm implementation: theoretical description 

While the problem of finding the roots (zeros) of the function on a complex plane is old and 
well explored, it remains rather difficult to solve. There are many “root polishing” algorithms 
available which can provide a given zero with a required accuracy. However, we must first 
isolate a zero from others in a given region with relatively good accuracy in order to get fast 
and reliable convergence of a given polishing algorithm (if the zero is of the first order). Here, 
we use the Lehmer-Schur algorithm [33] built on the “Argument Principle” (see for example 
[35]). Suppose that a function ( )f z  is meromorphic (analytic except for poles) from the do-

main interior to a positively oriented contour G , analytic and nonzero on G , then 

 ( ) ( )ln 2 ,f z dz Z Pι π
Γ

′ = −  (23) 

where Z  is the number of zeros, P  is the number of poles of the function in the domain, and 
ln′  denotes the logarithmic derivative of a given function ( )f z . Absence of poles follows 

immediately from condition (8) because poles can appear only in the expressions for inverse 
matrices ,i id  and im . Physics here corresponds to natural facts that the field in an element of 

the structure depends on the fields in the neighboring elements, and the wavefront of the field 
inside a structured unit cell is always different from that of a plane wave in a uniform media. 

First, we should determine a region to localize the roots, and use (23) to find the total 
number of zeros in the domain. Here, we choose a rectangle that includes the origin 0z = . 
The rectangle should not be too large, as it is difficult (i) to excite modes with the propagation 
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constants being much higher than that of the incident wave (we normalized all wave vectors 
to the wave vector of the incident light, meaning that the square shouldn’t be more than a 
couple orders of magnitude larger than a unit square), or (ii) propagate the modes with sub-
stantial attenuation (i.e., with large imaginary parts of their propagation constants). 

Next, the rectangular domain is split in half (in a real situation, any ratio may be used) 
over vertical and horizontal dimensions and use (24) again in order to locate “non-empty” 
(containing zeros) quadrants. Such iterations (splitting of zero-containing quadrants in four 
parts) are repeated until the resulting quadrants are small enough - meaning that zeros have 
been located close enough to ensure convergence of a given root-polishing algorithm. This 
process is schematically represented in Fig. 2, where crosses correspond to the values of xk  

(eigenvalues) of a binary periodic structure. 
To test our approach, we consider a layer consisting of only two elemental materials (see 

Fig. 1(b)). This binary structure (Material 1) is composed of a gain-doped silica layer (with 
thickness 1 45 nmδ =  and complex dielectric permittivity 1 2.7224 0.029615ε ι= − ), and a 

layer of silver with 2 5nmδ =  and 2 26.079 0.882ε ι= − + . The incident p-polarized light of a 

wavelength 740nmλ =  enters at the incident angle, 3θ π= , as shown in Fig. 1. 

For this problem, the nonlinear equation to be solved is given by expression (21). We seek 
to get all xk  in a rectangle with the lower left corner being at 100 100ι− − , and the upper 

right corner at 100 100ι+ . 
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Fig. 2. Schematic representation of the Lehmer-Schur algorithm for Material 1. The red crosses 
( × ) correspond to the values of kx detected though several consecutive splittings; the black 
crosses ( × ) indicate the remaining values of kx yet to be found. 

Several consecutive splittings of the initial search area (a red rectangle) are shown in Fig. 
2 by blue, orange, and black lines. The final zero-containing quadrants are shown as filled 
yellow rectangles. Overall, this is simply a generalization of the dichotomy method for the 
complex plane. As calculations for each quadrant are completely independent from each oth-
er, these calculations can be done in parallel. 

It is convenient to use (25) in the following formulation: 

 ( )( )1
arg ,

2
f z Z P

π ΓΔ = −   
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here ( )( )arg f zΓΔ  is a change of argument of function ( )f z  along the closed contour Γ . In 

this case, it is not required to calculate the derivatives of the function. However, troubles arise 
because available functions for calculating arguments of a complex number are well defined 

only on one of the branches (usually the principal one). In order to calculate ( )( )arg f zΓΔ , 

Γ  is split into relatively small steps, and is checked whether arguments on every step change 
by a small value with respect to 2π . If this change is greater than some threshold value, let's 
call it argument smoothness tolerance (say, 0.1), then we split our small interval in half and 
repeat calculation of the argument for both parts. Iterations are continued until this branch 
point is located, or it is understood that there is no branch point on this interval. At this point, 

( )( )arg f z  has a jump of 2π , so we can correct our calculations of the argument function, 

which follows the principal branch only, by adding this jump to the sum of argument changes. 
It should be noted that instead of the argument function, the complex logarithm function can 
be used. 

During application of the Lehmer-Schur algorithm, we should watch closely for the con-
servation of the total number of zeros. If the total number of zeros is not conserved, it usually 
means that there is a zero on one of the boundaries and this boundary must be moved. After 
the zeros are separated, the hybrid Powell algorithm (a modification of 2D Newton's algo-
rithm) [36] is used in order to obtain every zero with a desired accuracy. Currently, an im-
plementation provided by the GNU Scientific Library [37] is used. 

3.1. Accuracy of the proposed algorithm 
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Fig. 3. Relative errors in real (a) and imaginary (b) parts of the propagating constant for the 
lowest eigenmode as a function of the incident wavelength λ obtained for test Material 2. 

As a reference point, we have used the simulation results from 2D spatial harmonics analysis 
(SHA), proposed in [28] and validated in [27, 38] (2D-case) and in [27] (3D-case). The accu-
racy of the SHA method depends on the total number of Fourier modes. In the reference runs, 
300 modes were taken. This number of modes is, with confidence, beyond the limit of con-
vergence of the algorithm. This number is so high because the usual configuration of current 
nanostructures involves a complex piecewise constant function for the dielectric permittivity, 
which results in a slow convergence of the Fourier series. 

We compared the simulation results of the lowest propagating mode ( xk  has the smallest 

imaginary value) as a function of the incident light’s wavelength. Results are shown in Fig. 
3(a) and 3(b), where the binary periodic structure (Material 2) had the following configura-
tion: layer of silica doped with gain inclusions of thickness 1 20nmδ = , and a layer of silver 

of thickness 2 20 nmδ = , incident angle 0θ = . The optical constants of silver and doped 

silica were kept the same as in Material 1. 
We have used the following parameters of the algorithm: zeros tuning was started after the 

size of all the quadrants in the Lehmer-Schur algorithm smaller than 310−  was achieved, ac-
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curacy of the zero tuning was 1610−  (the absolute value of the function at the zero-point). It 
can be seen that the same (up to the round-off error) results for 300 harmonics in SHA have 
been obtained. These results are very promising, taking into account the performance tests 
discussed later. Here, it should also be stressed that the proposed algorithm takes into account 
the piecewise character of the structure by using the natural proper functions. This means that 
the exact eigenvalues are obtained up to the accuracy of calculated zeros, which is limited 
from below by a round-off error of a given floating-point representation. 

In Fig. 4, we demonstrate that the propagation constants ( xk ) from the MEP-SHA method 

converge to the results of the proposed method after increasing the number of harmonics. In 
this case (Material 3) the binary structure had the following composition: silica layer of thick-
ness 1 20nmδ =  and 1 2.723ε = , and a layer of silver of thickness 2 20 nmδ =  and 

2 25.274 0.85436ε ι= − + , and the wavelength of normally incident light is 730 nm. Even in 

our quite simple example, only after taking into account at least 300 Fourier modes the MEP-
SHA was capable of computing almost the same numerically exact (up to a floating-point 
representation accuracy) eigenvalues as the proposed method. 
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Fig. 4. Convergence of the SHA method (non-circular markers of different color) with increase 
of the total number of modes to the results of the new method (blue circles) simulated for test 
Material 3. The results for SHA with 300 modes (brown triangles) and for proposed solver 
(blue circles) are indiscernible. 

3.2. Parallelization of the algorithm 

After each iteration of the Lehmer-Schur process, a set of zero-containing quadrants is found. 
Every such quadrant is processed independently. Thus, we have a natural, parallel part of the 
algorithm. Another important part is the final tuning of zeros with Powell's algorithm, where 
each zero is independent. However, as we know that this part of the entire algorithm takes a 
small fraction of the total computation time, it is much more beneficial to optimize the calcu-

lation of ( )( )arg f x  in the Lehmer-Schur process. 

Currently, only the simplest Lehmer-Schur parallelization described above has been im-
plemented. The shared memory model with the Linux implementation of POSIX threads as a 
parallelization mechanism is used. 
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For our current requirements (simulation of metasurfaces), we are satisfied with the 
present performance, which is more than one order of magnitude faster than the traditional, 
MEP-based SHA. The comparison of the performances of SHA against the proposed algo-
rithm is shown in Fig. 5. As one can see from Fig. 5(a), scalability of the proposed algorithm 
is better than in the case of SHA, but still far from linear. The total performance is much bet-
ter, which is demonstrated in Fig. 5(b). Moreover, in order to obtain comparable accuracy in 
MEP-based SHA (even for the lowest evanescent modes), one must use hundreds of modes. 

For the proposed approach, we have used a freely available gcc compiler and standard li-
braries, while for the SHA code we have used a highly optimized Intel compiler together with 
a specialized Intel Math Kernel Library. So we still have a room for further acceleration of 
the new algorithm implementation. Hence, the current speed up numbers at Fig. 5(b) can be 
considered as minimal values. All the performance tests have been performed on Intel Xeon 
5450 CPU operating at 3.0 GHz under CentOS 5.6 Linux. 

4. Conclusion 

We propose an algorithm for simulating periodic metasurfaces and cascaded metamaterial 
structures. The current formalism is developed for 2D-geometry, but can be generalized for 
3D-case without any difficulties. We decided to limit ourselves to the 2D-case in order to 
keep all derivations relatively simple and clear for understanding. The proposed algorithm 
was implemented, and its accuracy and performance have been thoroughly tested. The prelim-
inary results are truly encouraging - both in terms of accuracy and speed. Even the proof-of-
concept, pilot version of the proposed algorithm is significantly (at least one order of magni-
tude) faster than the traditional, MEP-based implementation of SHA. 
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Fig. 5. (a) Scaling of the current implementation of the algorithm. (b) Computation time of the 
new solver and the MEP-based SHA solver vs. number of modes (N). 

We must point out that even the simplest case of a slit in a metal film requires using at 
least 80 modes in the MEP-based SHA (or similar algorithms) in order to get any reasonable 
correspondence with experimental results [39]. In this case, our method offers more than one 
order-of-magnitude less time. At the same time, more involved configurations may require 
even more modes, as the main problem of the Fourier basis in MEP-based approaches is poor 
representation of piecewise constant distribution of dielectric constants in the media, which 
leads to slow convergence of higher frequency modes. This means that the further from the 
origin we go in the spatial spectrum, the more significant is the error (see Fig. 4). In other 
words, higher frequency modes obtained by SHA have a tendency to deviate from their exact 
values stronger than lower frequency modes. In contrast with the MEP-based approaches, the 
proposed method includes naturally the sharp boundaries. As a result, all calculated propaga-
tion constants are exact up to a desired level of accuracy, which is limited from below by a 
round-off error of floating-point representation. 

One may speculate that the non-propagating modes are not that important. However, cur-
rent metasurfaces and metamaterials operate mostly due to near-field coupling effects. In the 
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case of cascaded layers (which is natural for construction of bulk metamaterials) the near-
field interaction becomes crucial. As it has already been demonstrated in [28], the signific-
ance of lower evanescent modes in cascaded structures increases dramatically with respect to 
single-layer case, and is still important even in thin symmetric structures on a substrate [40]. 
As a result, accurate calculation of the evanscent modes becomes absolutely necessary. This 
leads to an increasing number of modes in MEP-based methods, with N reaching several hun-
dred modes. In this case, usage of our method is a must, because of several orders of magni-
tude advantage in performance. 

As the number of required operations is dramatically decreased, the proposed solver de-
monstrates somewhat weak scalability, which is still better than the scalability of MEP-based 
methods. However, due to the exceptional speed enhancement of our new solver, even its 
current, non-optimal implementation exhibits very good performance. The solver already 
allows for fast global optimization of modern periodic metamaterials and metasurfaces by 
using a conventional, four-core desktop computer. 

We truly believe that the proposed solver is a key to both fast computation of periodic na-
no-structures on conventional personal computers and feasible application of the optimization 
algorithms, which requires many repeating calculations of the given structure. Future work 
will include the implementation of the proposed algorithm into our free, in-the-cloud simula-
tion tool [38], which currently employs a conventional, MEP-based version of 2D SHA. 
Speed-up techniques for spectral and parametric sweeps will also receive our special atten-
tion. 
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