ABSTRACT: Photonic nanostructures that realize ultrafast switching of light polarization are essential to advancements in the area of optical information processing. The unprecedented flexibility of metasurfaces in light manipulation makes them a promising candidate for active polarization control. However, due to the lack of optical materials exhibiting a fast as well as large refractive index change, photonic metadevices capable of ultrafast polarization switching remain elusive. Here, an ultrathin nonlinear chiral meta-mirror consisting of an array of amorphous silicon (α-Si) split-ring resonators on top of a silver backplane is demonstrated as a feasible platform for picosecond all-optical polarization switching of near-infrared light at picojoule-per-resonator pump energies. This success was made possible by the high-quality-factor resonances of the proposed meta-atoms that enable the mirror to exhibit strong chiro- and enantioselectivity. Experimental results confirm that our meta-mirrors can be used to facilitate high-speed and power-efficient polarization-state modulators.

KEYWORDS: metasurfaces, chirality, nonlinearity, optical switching, polarization

Formed by engineered subwavelength building blocks known as meta-atoms, metasurfaces have demonstrated the ability to control optical waves with unprecedented flexibility. As a result of the resonant nature of the meta-atoms, the greatly enhanced light–matter interaction in metamaterials affords dramatic changes in the properties of light even within a thin layer. In particular, controlling the polarization state of light at the subwavelength scale not only results in many intriguing phenomena but also is of fundamental importance to numerous applications in optical communication, microscopy, biochemical sensing, and so on. Importantly, chiral metamaterials demonstrate the extensive potential for polarization-sensitive nano-optical applications due to their strong chiroptical responses that surpass natural materials by many orders of magnitude. Indeed, chiral metadevices have been exploited for a variety of applications. As circularly polarized light (CPL) intrinsically possesses a three-dimensional (3D) structure, 3D nanoarchitectures are usually required to achieve a pronounced chiroptical response. However, such structures require complex nanofabrication, and more importantly, the 3D bulk structures of chiral metamaterials also render the resulting metadevices unsuitable for fast polarization switching. In particular, for ultrafast modulation based on optical excitations, bulk plasmonic nanostructures may inevitably result in poor transient response due to the undesired thermo-optical effects and the slow thermal dissipation. This limits their applications where dynamic control of light polarization is required.

In contrast to metamaterials that are characterized by their bulk effective optical properties, metasurfaces represent a recent advancement based on an alternative approach to manipulating the light that utilizes subwavelength-thick quasi-two-dimensional nanostructures. By engineering the structure of their meta-atoms, metasurfaces have been demonstrated to achieve complete control over the phase, amplitude, and polarization of light. The unique properties of metasurfaces have been exploited to create a number of transformative optical phenomena. Recently, the ability to achieve a strong chiroptical response in metasurfaces has attracted considerable attention. By simultaneously breaking n-fold rotational (n > 2) and mirror symmetries at the unit-cell level, the recently reported chiral meta-mirrors offer a unique possibility to explore strong light–matter interactions (i.e., between CPL and custom-designed metasurfaces) with just a single two-dimensional (2D) patterned layer. In stark contrast to conventional mirrors that flip the handedness of circularly polarized waves upon reflection, a chiral meta-mirror strongly absorbs CPL of one handedness and reflects that of the opposite handedness in a manner that preserves the
In this work, we demonstrate all-optical picosecond light polarization switching with an ultrathin nonlinear chiral meta-mirror consisting of a 2D array of α-Si split-ring resonators on top of a silver backplane, with a thin silica spacer layer in between. The proposed meta-mirror embodies a combination of advantages of dielectric and plasmonic planar optical systems. In particular, the linear optical properties of the meta-mirror, i.e., the sharp chiral-selective absorption and the preservation of circular polarization upon reflection, are essentially attributed to two factors, the extremely low loss of α-Si at optical communication wavelengths and the Fabry–Perot interference enabled by the highly reflective plasmonic backplane. Leveraging the dynamics of the photoexcited carriers in the α-Si resonators with pump light incidence, these linear chiroptical responses can be altered dynamically, which gives rise to a strong and ultrafast polarization modulation of light in the nonlinear regime.

Figure 1a illustrates a schematic of the chiral meta-mirror’s enantiomeric unit cells that consist of an α-Si split-ring resonator with broken 2D-chiral symmetry on top of an unpatterned silver backplane. This design was inspired by a previously reported chiral mirror designed to operate at microwave frequencies. In our design, the unequal splits and arm lengths break the 2D-chiral symmetry of the α-Si split-ring nanostructure, while the silver backplane enables the spin-dependent interference of CPL by creating an asymmetric (air/α-Si/SiO2/silver) Fabry–Perot cavity. This structure results in an enormously strong chiral-selective response to CPL. The silver backplane also ensures zero transmissivity, i.e., the absorbance satisfies A = 1 − R, where R represents the reflectance. A 30 nm thick SiO2 spacer layer is introduced between the α-Si resonator layer and the silver film for optimal performance. Different from past meta-mirror embodiments based on planar plasmonic nanostructures, our design, which exploits the extremely low loss of α-Si at the wavelengths of interest (∼1.5 μm), is capable of achieving a...
high Q-factor chiral resonance that leads to spin-sensitive reflection (absorption) spectra.

Exploiting the carrier dynamics in α-Si under optical excitations,42,43 chiral meta-mirrors, therefore, can enable ultrafast optical polarization switching. As envisioned in Figure 1a, the chiral symmetry of the two α-Si resonators gives rise to the flipped spin-selectivity of the two enantiomers under the illumination of CPL. This important property affords the intrinsic enantioselectivity of the chiral meta-mirror in both the linear and nonlinear regimes. We note that our chiral meta-mirror is different from the recently reported systems for active polarization control.44−46 Without involving chirality, the polarization control offered by those systems is strictly valid for the case of oblique incidence. In sharp contrast, our chiral meta-mirror is designed to manipulate the polarization of light at normal incidence, which is regarded as an essential requirement for practical metadevices. Moreover, compared with the previously reported α-Si-based active metamaterials, exhibiting plasmonic resonances,42,43 the α-Si nanostructure in our design supports chiral resonance modes and simultaneously provides the basis for all-optical modulation. Figure 1b,c is the scanning electron microscopic (SEM) images of the fabricated samples for the two enantiomers. The total pattern size of both enantiomers was 300 μm × 300 μm. We emphasize that by enhancing the chiroptical response in 2D-chiral dielectric resonators; our design only requires a single nanopatterning step, which significantly reduces the fabrication complexity of the device (see Supporting Information).

Figure 2. Simulated linear chiroptical response of both enantiomers. (a) Reflection spectra of the co- and cross-polarization components of enantiomer A under LCP and RCP illumination. (b) Reflection spectra of the co- and cross-polarization components of enantiomer B under LCP and RCP illumination. (c) The corresponding handedness-dependent total absorption spectra of enantiomer A. (d) The electric field distributions and the associated vector arrows on a plane passing through the middle of the α-Si resonator when enantiomer A is illuminated by LCP and RCP waves at a resonance wavelength of 1503 nm, respectively. The electric field magnitude is normalized to that of the incident wave.

To evaluate the chiroptical response of the chiral meta-mirrors, full-wave electromagnetic simulations were performed using CST Microwave Studio, a commercial finite integration package (see Supporting Information). Figure 2a shows the simulated reflectance spectra of co- and cross-polarization components of enantiomer A under left-handed circularly polarized (LCP) and right-handed circularly polarized (RCP) illumination. The power reflection coefficient $R_{LL}(R_{RR})$ is defined as the ratio of the power of the reflected LCP (RCP) component from the meta-mirror to that of the LCP incidence, whereas a similar meaning applies to the notation $R_{LR}(R_{RL})$. The fact that the power reflection coefficients of the cross-polarization components are identical, i.e., $R_{LL} = R_{RR}$, arises from the unit cell symmetry.5 A sharp dip is identified in the R_{LL} spectrum of enantiomer A around the resonance wavelength of 1503 nm, where, in sharp contrast, R_{RR} is greater than 0.8. The corresponding total absorption spectra are shown in Figure 2c, indicating that the chiral-selective resonance in enantiomer A leads to near unity absorption of LCP light. Results shown in Figure 2a,b unambiguously reveal the two distinctive characteristics of the chiral meta-mirror, i.e., the ability to preserve polarization upon reflection and the spin-dependent absorption. As expected, Figure 2b shows that enantiomer B exhibits a handedness-flipped chiroptical response when illuminated by CPL, further suggesting the enantimetric characteristic of the structure. It should be noted that, distinct from the chirality found in plasmonic nanostructures,22,23 the observed extraordinary chiroptical
responses arise from the Mie resonance of the α-Si split rings. As shown in Figure 2d, this is made evident from the simulated electric field distribution on a plane passing through the middle of the dielectric resonator. In particular, the spin-dependent local field enhancement arising from the chiral-selective resonance of enantiomer A results in the distinct absorption in the silver backplane at the resonant wavelength. We note that the chiroptical response of the proposed meta-mirrors is directly determined by the symmetry property of the unit cell; for a systematic study, refer to Figure S2 in the Supporting Information. In addition, in the absence of a backplane, the array of 2D-chiral α-Si resonators exhibits no chiroptical response in the far-field (Figure S3 in Supporting Information).

In order to characterize the chiroptical responses of the meta-mirrors, we illuminated the fabricated samples of both enantiomers with circularly polarized waves and obtained reflection coefficients by using a microspectroscopy setup (see Supporting Information). The measured reflectance results are shown in Figure 3a,b, where all spectra were normalized to that of a bare silver substrate. A sharp dip can be identified in the R_{LL} spectrum of enantiomer A at wavelengths around 1530 nm, while the corresponding R_{RR} spectrum exhibits a high reflectivity (>0.5) in the same wavelength band. The corresponding spin-dependent total absorption spectra of enantiomer A are shown in Figure 3c. In comparison, as illustrated in Figure 3b,d, enantiomer B exhibits a complementary chiral reflection behavior. In brief, the fabricated chiral meta-mirrors strongly absorb CPL of one handedness and preserve the polarization state of the other upon reflection. The measured results are in good agreement with the simulation data shown in Figure 2, with slight discrepancies likely arising from fabrication imperfections. We note that the spectra shown in Figure 3 reveal that our chiral meta-mirrors yield a narrow-band chiral resonance, which is explicitly distinct from the plasmonic chiral metamaterials reported previously.9,10 In particular, the measured R_{LL} spectrum of enantiomer A and the R_{RR} spectrum of enantiomer B reveal a Q-factor (defined as $\lambda/\Delta\lambda$) of \sim56 and \sim46, respectively. This is comparable to what has been observed in mid-infrared chiral metasurfaces composed of high-aspect-ratio asymmetric Si resonator arrays, which are capable of supporting Fano resonances.20

Unlike the meta-atoms (such as the gold helices6) in which the circular polarization states correspond to the eigenmode resonance of the structure, the chiroptical response observed here originates from both the intrinsic chiral property of the proposed meta-mirror and its optical anisotropy. The latter, stemming from the lack of in-plane rotational symmetry of the unit cell, leads to the polarization-dependent optical response to a linearly polarized wave. To provide a complete picture of the reflection behavior of our chiral meta-mirrors, the samples of both enantiomers were illuminated by a linearly polarized wave at a series of azimuthal angles φ, and the polarization ellipse of the reflected waves was then characterized (see Supporting Information). The measured ellipticity (η) and polarization rotation angle (θ) are summarized in Figure 4a−d, while the simulated power loss density (PLD) distribution on the surface of the silver backplane for several values of φ is presented in Figure 4e. The corresponding discussion is provided in the Supporting Information.

![Figure 3. Measured linear chiral response of both enantiomers. (a, b) Measured reflection spectra of the co- and cross-polarization components of enantiomer A and enantiomer B. (c, d) The corresponding handedness-dependent total absorption spectra of enantiomer A and enantiomer B.](https://dx.doi.org/10.1021/acs.nanolett.0c00007)
The ultrafast modulation of the chiral meta-mirror was studied using a pump pulse to photoexcite carriers in the α-Si, and a near-infrared probe pulse was utilized to characterize the time-dependent change in the chiral-selective reflection. More details of the pump−probe measurements can be found in the Supporting Information. Since the pump beam size (∼3 mm in diameter) was much larger than the samples’ footprint, it can be assumed that the corresponding photoexcitation is uniform, and the maximal pumping power is ∼4.0 picojoule-per-resonator. Considering the symmetry in the enantiomeric response of the two enantiomers, the remaining pump−probe studies were carried out using enantiomer A. Moreover, given the extremely low cross-polarized reflection behavior, only pump-induced changes in the copolarized reflection (R_{1L} and R_{RR}) were measured.

Figure 5 illustrates the chiral-selective reflection modulation of enantiomer A at a series of wavelengths around the resonance resulting from pump−probe experiments using a pump intensity (I_p in terms of peak power density) of 0.07 GW cm^{-2}. For R_{1L}, a peak switching ratio (ΔR_{1L}/R_{1L}) of more than 60% is observed for a zero pump−probe delay time (i.e., Δt = 0) at the resonance wavelength of 1530 nm. As the probe wavelength is moved from the shorter- to the longer-wavelength side of the resonance, the peak switching ratio of R_{1L} exhibits a sign flipping. A fast (∼10 ps) component and a slow nanosecond component are observed in most of the traces shown in Figure 5a, which agrees with the transient response observed in previously reported α-Si-based active metadevices.42,43 It should be noted that, considering the time−bandwidth product (TBP), which determines the correlation between the pulse duration (Δτ) and bandwidth (Δλ), pump pulses with a finite duration of ∼1 ps (Δλ ∼ 1 nm) are used to resolve the high Q-factor resonances observed in our chiral meta-mirrors. Compared with the femtosecond (fs) pump pulses used in previous work,42,43 the ps pump pulses employed in our study resulted in a ∼3 ps rise time,
corresponding to the width of the pump−probe cross-correlation. This suggests that a steeper rising edge may be achieved by pumping the chiral meta-mirror with short-duration pulses, however, with a trade-off in wavelength resolution. Furthermore, the traces in Figure 5a also reveal a long-lasting component (Δt ∼ 20−40 ps) in ∆R_{LL}/R_{LL} at some probe wavelengths (e.g., 1525 and 1540 nm). This observation can be attributed to the competition between the free-carrier relaxation process in α-Si and the slow thermal effect due to lattice heating.47 In sharp contrast, no significant modulation was observed in the pump−probe signal of ∆R_{RR}/R_{RR} (Figure 5b).

In order to better elucidate the correlation between the resonance behavior of the ultrafast modulation and the corresponding linear chiral response, in Figure 5c, we present the switching ratio spectra, which are generated by integrating the pump−probe signal peaks found in panels a and b, and the dashed curves represent interpolated data. Inset: The corresponding reflectance spectra with (markers) and without a pump (curves). (d) Pump power dependences of the maximum switching ratio at a probe wavelength of 1530 nm. Inset: Schematic of the spin state of the probe pulses in the corresponding measurements.

Figure 5. Pump−probe spectroscopy of chiral-selective reflection dynamics. (a) Comparison of the pump−probe signal associated with R_{LL} modulation for a series of probe wavelengths around the resonance of enantiomer A. (b) The corresponding pump−probe signal for R_{RR} modulation. The chiral meta-mirror is excited by pump pulses of constant intensity (I_{pump}) of 0.07 GW cm⁻². (c) Switching ratio spectra, resulting from the pump−probe spectroscopy. The empty circles represent the measured data obtained by integrating the pump−probe signal peaks found in Figure 5a. (d) Pump power dependences of the maximum switching ratio at a probe wavelength of 1530 nm. Inset: Schematic of the spin state of the probe pulses in the corresponding measurements.

The characterization of pump power dependence of the meta-mirror’s switching behavior is of significant practical importance for the development of corresponding metadevices. To this end, we performed pump−probe experiments with increasing pump power I_{p} at a fixed probe wavelength of 1530 nm, where the corresponding maximal switching ratio is shown in Figure 5d. A strong chiral selectivity is identified: the on-resonance maximal ∆R_{LL}/R_{LL} reaches an extraordinary value of ∼518% when I_{p} was increased to 0.57 GW cm⁻² and, in contrast, ∆R_{RR}/R_{RR} approaches ∼−37%. Within the pump power range studied, no saturation was observed. We emphasize that, using a similar pumping intensity, a transmission modulation of ∼1% was recently observed in an all-dielectric metasurface consisting of an array of α-Si nanodisks.36 In addition, the maximal pump intensity in our experiments was more than 1 order of magnitude lower than that used in the recent demonstration of switchable nonlinear metamaterials based on gold nanorods.45 Moreover, the linear power dependence of the switching ratio identified in Figure 5d would be beneficial in applications where modulation-level control is required.

The observed chiral-selective nonlinear dynamics essentially confirm the potential of these meta-mirrors for achieving
ultrafast switching of polarized light. To characterize the polarization switching effect, pump–probe measurements were carried out using an experimental setup with a polarization-analyzing unit included. In particular, a linearly polarized probe pulse and an 800 nm pump pulse were used to measure the time-resolved polarization ellipse of the reflected wave from enantiomer A (see Supporting Information). To highlight the flexibility offered by the proposed meta-mirror in light polarization synthesis, but without loss of generality, we fixed the incident polarization angle ϕ to 50°.

Figure 6a–i conveys the measured dynamics of the reflected polarization state at the wavelengths of 1530, 1540, and 1550 nm. A series of pump−probe experiments were performed, where the resulting polarization ellipses corresponding to the reflected wave at 1530 nm for a series of Δt are shown in Figure 6a. By evaluating these polarization ellipses, as shown in Figure 6b, we further obtained the corresponding time-dependent modulation of ellipticity (η) and polarization angle ($\Delta \theta = \theta_{\Delta t} - \theta_{\text{static}}$, where $\theta_{\Delta t}$ and θ_{static} are the orientation angles associated with the polarization ellipse of the reflected wave at Δt and in the static state, respectively). A component with a very rapid rise time ~ 1 ps was identified in both traces, which has a concomitant ~ 0.2 and $\sim 5°$ change in η and $\Delta \theta$ at zero pump−probe delays ($\Delta t = 0$), followed by a slower ~ 10 ps recovery process. The observed sign flipping and the long-duration plateau in the $\Delta \theta$ trace (lower panel of Figure 6b) arise from the competition between the free-carrier relaxation and lattice heating processes in α-Si.47 The evolution of the polarization ellipse in Figure 6c more clearly shows the pump-induced dynamic modulation of the polarization state. Furthermore, for the wavelength of 1540 nm (Figure 6d−f), a maximum $\Delta \theta$ modulation as large as 20° was observed at $\Delta t = 0$, accompanied by a relatively small change in η. Along with the results at a 1550 nm wavelength (Figure 6g−i), Figure 6a−i reveals the optical excitation enabled strong modulation of the polarization states of reflected light within the resonance band of enantiomer A. The strong wavelength-dependence seen in Figure 6a−i is consistent with the sharp resonance identified in the linear chiroptical response of the meta-mirror.

Figure 6. Picosecond optical switching of light polarization. (a) The polarization ellipses of the reflected wave at 1530 nm for a series of probe–pump time delays (Δt). The gray dashed line indicates the incident light polarization. (b) The corresponding pump-induced ellipticity (η) and polarization angle modulation ($\Delta \theta$) versus Δt. The dashed line in both panels represents a triple exponential fit to the measured data (open markers). (c) The corresponding evolution of the polarization ellipse at $\Delta t = -1$, 0, 5.4, and 15 ps. $\Delta t = -1$ ps is referred to as the static state. The dashed line in each panel represents the orientation direction of the previous polarization ellipse. (d−f) Same as panels a−c, but for the reflected wave at 1540 nm. (g−i) Same as panels a−c, but for the reflected wave at 1550 nm. For the results shown in panels a−i, a pump intensity of $I_p = 0.20$ GW cm$^{-2}$ was used. (j−o) Intensity-dependent polarization state switching. (j) The polarization ellipses of the reflected wave at 1530 nm for a series of pump intensities, I_p. The gray dashed line indicates the incident light polarization. (k) The corresponding pump-induced ellipticity (η) and polarization angle modulation ($\Delta \theta$) versus I_p. (l−m) Same as panels j and k, but for the reflected wave at 1540 nm. (n−o) Same as panels j and k, but for the reflected wave at 1550 nm.
Given that the refractive index change of α-Si and subsequently the resonance shift of the chiral meta-mirror varies with the optical excitation intensity, the polarization state of a reflected wave can be controlled by varying the pump intensity, I_p. Consequently, by varying I_p and collecting the pump–probe signal at $\Delta t = 0$, we further study the dependence of polarization state modulation on the pump intensity (Figure 6)–o. When I_p increases from 0 (static) to 0.35 GW cm$^{-2}$, the polarization ellipse corresponding to the 1530 nm wavelength experiences an ellipticity decrease from 0.51 to 0.19 (upper panel of Figure 6k), while that corresponding to a 1540 nm wavelength shows an orientation rotation up to ~40° (lower panel of Figure 6m). For all three wavelengths that were studied, an approximately linear dependence of polarization state modulation on the pump intensity used in this measurement was roughly 2 orders of magnitude lower than that used in ref 45, which has demonstrated similarly strong polarization manipulation in the transmission mode. In conclusion, we have demonstrated a nonlinear chiral meta-mirror for ultrafast all-optical switching of near-infrared light polarization. Our results show that the interference-enhanced Mie resonance in high-index nanophotonic structures leads to a strong enhancement of the light–matter interaction at the nanometer scale, offering a transformative approach to achieving photonic meta-devices for an extraordinarily strong chiroptical response and ultrafast polarization switching. The proposed hybrid chiral meta-mirrors show great promise, particularly for applications in polarization-sensitive all-optical information processing. Given the experimentally observed sharp chiral resonance and spin-selective near-field enhancement, we also envision that the proposed meta-mirrors can be used as chip-scale chiroptical platforms for highly sensitive enantiomeric sensing of biochemical substances.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c00007.

Device fabrication, optical characterization, numerical simulations, and an additional discussion of the optical anisotropy and performance improvement of the meta-mirror (PDF)

AUTHOR INFORMATION

Corresponding Authors

Lei Kang — Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States; orcid.org/0000-0001-7718-7756; Email: lzk12@psu.edu

Xingjie Ni — Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States; Email: xingjie@psu.edu

Zhiwen Liu — Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States; Email: zzl1@psu.edu

Douglas H. Werner — Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States; Email: dhw@psu.edu

AUTHORS

Cheng-Yu Wang — Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

Xuexue Guo — Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.nanolett.0c00007

Author Contributions

L.K., C.-Y.W., and X.G. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was partially funded by the Penn State MRSEC, Center for Nanoscale Science (NSF DMR-1420620), and by the DARPA EXTREME program (HR0011720032).

REFERENCES

