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The exploration of quantum inspired symmetries in optical systems has spawned promising physics and provided
fertile ground for developing devices exhibiting exotic functionalities. Founded on the anti-parity–time (APT)
symmetry that is enabled by both spatial and temporal interplay between gain and loss, we demonstrate theo-
retically and numerically bi-color lasing in a single micro-ring resonator with spatiotemporal modulation along its
azimuthal direction. In contrast to conventional multi-mode lasers that have mixed-frequency output, our laser
exhibits stable, demultiplexed, tunable bi-color emission at different output ports. Our APT-symmetry-based
laser may point out a new route for realizing compact on-chip coherent multi-color light sources. © 2021

Chinese Laser Press

https://doi.org/10.1364/PRJ.417296

1. INTRODUCTION

Although mode competition in laser systems is usually consid-
ered as an obstacle for achieving stable single-mode operation, a
multi-color laser supporting more than one mode that has sta-
ble, deterministic, frequency-separated coherent light emission
is desirable owing to its wide applications in wavelength-
division multiplexing [1], heterodyne interferometry [2], and
full-color display [3]. Currently, there are two major ways to
realize multi-color laser emission: a combination of multiple
single-mode laser cavities and multi-mode emission from a
single cavity. Combining the lasers of all desired output wave-
lengths, e.g., individual red, green, and blue lasers to build a
laser with white light output, is the most intuitive way to cus-
tomize the color output [4–6]. But the convenience comes with
the cost of a low integration level owing to the requirement of
additional optical interconnection modules. Multi-frequency
emission from a single cavity can be realized by excitation of
multiple modes or stimulated emission processes [7–9].
Although those systems can be scaled down for dense integra-
tion, they suffer from instability of output power distribution
among the desired modes due to variance of pumping power.
Moreover, it is also difficult to separate different frequency
components into different output channels without assistance
from additional optical elements. Therefore, neither approach
is competent for creating compact on-chip multi-color laser
sources. Previous works have tried to address these challenges
by integrating subwavelength-spaced structures, e.g., metasurfa-
ces, into gain media to control the resonances. With proper
designs, only the targeted wavelengths are enabled through
superlattice plasmonic resonances [10,11], which improves

the stability as well as spatially manipulates the transverse wave
vectors of different laser emissions. However, such a difference
in wave vectors is very small, down to several hundreds of μm−1

in free space, and it is still difficult to spatially separate them
without external modules. Therefore, a miniaturized, stable
multi-color laser with demultiplexed lasing output is still long
sought after.

Recently, the exploration of non-Hermitian quantum sym-
metries, especially parity–time (PT) symmetry in photonic sys-
tems has enabled new features and functionalities in laser
systems [12,13]. Compared with other approaches that mainly
rely on varying refractive indices to tune cavity resonances,
non-Hermitian symmetry-based optical systems are based on
the modulation of gain and loss, i.e., the part of a refractive
index to manipulate the imaginary part of resonances. The pe-
culiarity of PT-symmetry-induced properties have led to the
development of new laser systems, such as loss-induced revival
of lasing [14], alleviation of mode competition [15], and lasing
wavefront shaping [16,17]. However, current reported PT sym-
metric lasers distribute gain and loss only in the spatial dimen-
sion. This spatial degree of freedom has limited control over the
coupling among modes with the same frequency. It does not
have the capability to control mode coupling in the frequency
domain, which is essential for achieving controllable multi-
color lasing in a single cavity.

Here we propose a new scheme for creating a single-cavity
multi-color laser by engineering gain and loss in both spatial
and temporal domains based on the concept of anti-PT
(APT) symmetry. As a demonstration, we design and numeri-
cally simulate a micro-ring bi-color laser with realistic physical
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parameters. The stabilized and tunable bi-color emission is pro-
tected by the modulation wavevector and modulation fre-
quency. Moreover, as the laser emission is originated from
two counter-propagating modes in the micro-ring cavity, the
two frequency outputs are well separated and can be used
independently. We believe that this APT-symmetry-enabled
bi-color lasing scheme provides a brand new route towards
compact on-chip multi-color lasers, which could be promising
coherent sources for future photonic integrated chips.

2. THEORETICAL BACKGROUND AND
WORKING PRINCIPLE

The theoretical foundation of our proposed bi-color laser lies
on the optical APT symmetry. In contrast to PT symmetric
Hamiltonians that fulfill the commutation relation �Ĥ ,P̂ T̂ ��0
under a combination of parity (P) and time-reversal (T)
operations, APT symmetric Hamiltonians satisfy the anti-
commutation relation fĤ , P̂ T̂ g � 0 [18]. An APT symmetric
Hamiltonian can be obtained from a PT symmetric one by
multiplying the unit imaginary number i, Ĥ �APT� � iĤ �PT�.
Such a close connection between APT and PT symmetric sys-
tems has attracted great interest in investigating the physics
of APT symmetry in various configurations in atomic [19],
thermal [20], electrical [21], and optical [22–25] systems.
However, how to exploit this new quantum symmetry in prac-
tical laser applications is still yet to be discussed.

Based on the relationship between PT and APT symmetries,
we derived how the bi-color lasing mode can be realized in an
APT symmetric system. Typically, a PT symmetric system can
be described by two oscillators with an identical resonance fre-
quency, yet opposite damping factors. They are coupled
through a conservative coupling process such as near field

coupling [Fig. 1(a)]. In contrast, an APT system can be
achieved by two oscillators with the same damping factor but
different resonance frequencies. Those oscillators are coupled
through purely dissipative channels such as far field coupling,
as described in Fig. 1(b), satisfying Ĥ �APT� � iĤ �PT�. We lev-
erage two whispering gallery modes (WGMs) in a micro-ring
resonator to realize an APT system. To obtain a dissipative cou-
pling component between two counter-propagating clockwise
(CW) and counterclockwise (CCW) WGMs, we apply a mov-
ing grating with a sinusoidally modulated imaginary part of per-
mittivity azimuthally along the micro-ring resonator [Fig. 1(c)].
The permittivity change can be expressed as Δϵ�ϕ, t� �
iΔϵI cos�Lmϕ − ωmt�, where ΔϵI is modulation depth, Lm
is an azimuthal modulation wavevector, ωm is modulation fre-
quency, ϕ and t are azimuthal angle and time, respectively. This
dynamic imaginary grating can be achieved through pumping
the micro-ring resonator using the interference of two optical
beams with slightly different center frequencies [26].

To show that the system is APT symmetric, we analyze
a pair of degenerated CW and CCW WGMs in the micro-
ring cavity with a sinusoidal modulation profile. Assuming
coupling exists only between these two modes with phase-
matching and frequency-matching conditions, the eigenmodes
of this system can be obtained by solving temporal coupled-
mode equations [27]:

Ĥ �t�Ψ�t� � i
dΨ�t�
dt

, (1)

where the time-dependent state vector Ψ�t� and Hamiltonian
of the system Ĥ �t� are written as

Ψ�t� �
�
a1
a2

�
eiωt , Ĥ �t� �

�
ω0 iκme−iωmt

iκmeiωmt ω0

�
:

(2)

Here a1 and a2 are the amplitudes of the CW and CCW
modes, respectively, ω0 is the original resonance frequency
of the two WGMs, and iκme�iωmt is the time-varying coupling
coefficient, where κm is proportional to the modulation depth
of ΔϵI . It should be emphasized that ωm can be either positive
or negative in the Hamiltonian to indicate the modulation trav-
els along CCW or CW direction, respectively. Taking the gauge
transformation a1,2 � A1,2e−i�ω0�ωm∕2�t to remove the temporal
variance, we get a time-independent Ĥ :

Ĥ �
�
−ωm∕2 iκm
iκm ωm∕2

�
: (3)

We can see that the degeneracy between CW and CCW
modes is broken in the new frame. The eigenvalues ω1,2
and the corresponding eigenvectors Ψ1,2 can be obtained:

ω1,2 � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
m

4
− κ2m

r
, (4)

Ψ1 �
�

1
−iΔω
κm

�
, Ψ2 �

�
1

−iκm
Δω

�
, (5)

where Δω �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
m∕4 − κ2m

p
� ωm∕2. We note that the equa-

tion is solved under a gauge transformation e−i�ω0	ωm∕2�t , which
means the solutions in Eq. (4) are eigenfrequencies in the
moving frames of which the rotating frequencies are 	ωm∕2.

(a) (b)
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(c)
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Fig. 1. Schematic illustration of (a) PT and (b) APT symmetries in
a two-oscillator system. −ig (ig) and κ represent gain (loss) and cou-
pling coefficients, respectively. In the PT symmetric system, resonance
frequencies ω1, ω2 of the two oscillators are identical, while they are
different in the APT symmetric one. (c) Configuration of APT sym-
metric micro-ring resonator under spatiotemporal modulation for
bi-color lasing. The dynamic imaginary grating of permittivity with
alternating gain (G) and loss (L) is moving azimuthally along the ring.
The moving direction is indicated by the green arrow.
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After changing back to the laboratory frame, The actual
number of observable eigenfrequencies should be four in total,
which are ω1,2 � ωm∕2 and ω1,2 − ωm∕2.

Looking back into the time-independent Hamiltonian, it is
evident that fĤ , P̂ T̂ g � 0. Here the parity operator P̂ repre-
sents the mirror reflection given by the first Pauli matrix σx ,
which exchanges the spatial positions of these two optical
modes, and the time-reversal operator T̂ is given by the com-
plex conjugation. Therefore, we can verify that this system sat-
isfies APT symmetry.

The dependence of real and imaginary parts of normalized
ω1,2 � ωm∕2 with different coupling coefficients κm and tem-
poral modulation frequencies ωm is shown in Figs. 2(a) and
2(b), respectively. In both figures, the eigenfrequencies can
be clearly classified into two regimes according to the existence
of degeneracy. Taking a slice across both regimes [Fig. 2(c)], we
can see that in the red regime, the real part is degenerate with a
non-vanishing opposite imaginary part. In contrast, in the yel-
low regime, the real part splits with a zero imaginary part. The
boundary of two regimes is along the line where κm � �ωm∕2
[dashed lines in Figs. 2(a) and 2(b)]. Similar to those in PT
symmetric systems, the eigenfrequency spectra in APT
symmetric systems can transit from real to complex values.

The transition boundaries are also called exceptional points
(EPs) or exceptional lines (ELs). However, the properties of the
corresponding eigenvectors are different between PT and APT
symmetric cases. In a PT symmetric case, P̂ T̂ Ψ1,2 � Ψ2,1 is
satisfied in the regime where the eigenfrequency is complex. It
is referred to as broken PT phase, as P̂ T̂ operating on Ψi do
not lead to the same Ψi (i � 1, 2). P̂ T̂ Ψ1,2 � Ψ1,2 can be
observed in the regime where eigenfrequency is purely real,
which is referred to as unbroken PT phase. This behavior is
opposite in our APT symmetric case: P̂ T̂ Ψ1,2 � Ψ1,2 is sat-
isfied in the regime where the eigenfrequency is complex (un-
broken APT phase), while P̂ T̂ Ψ1,2 � Ψ2,1 is fulfilled when
the eigenfrequency is purely real (broken APT phase). In other
words, both PT and APT symmetries have broken and unbro-
ken phases, but the spectral properties of each phase are com-
pletely different. Moreover, ωm does not merely define the
boundary between the broken and unbroken APT phases in
the solution of ω1,2. It also contributes to the Doppler shift
term �ωm∕2, which determines the frequencies of modes in
the laboratory frame (with respect to the moving frames under
gauge transformation). Compared with the PT symmetry with
only limited control over the phase transition, our APT system
has additional degrees of freedom in manipulating spectral
mode frequencies.

This spatiotemporal modulation enabled APT system with
modes of opposite imaginary parts in the unbroken APT re-
gime provides the foundation for creating our bi-color laser.
In Fig. 2(c), the blue curve in the red region represents the
mode of which the eigenfrequency has a negative imaginary
part, indicating persistent amplification of the energy in this
mode. With a sufficient large modulation depth κm > jωmj∕2,
lasing from this mode is possible where the EP works as the
lasing threshold since the mode begins to amplify beyond it
towards the unbroken APT regime. Considering the frequency
shifting term, two lasing modes with eigenfrequencies differing
by ωm can be observed in the system. Furthermore, if we as-
sume the non-Hermitian coupling coefficient κm is much larger
than ωm, the corresponding eigenvector of both amplifying
modes will be Ψ1� �1, 1�T approximately. It indicates that
the two lasing modes are actually the CW and CCW modes
with broken degeneracy, respectively.

While we can get a only pair of degenerate CW and CCW
lasing modes in a typical PT symmetric scheme since the real
parts of their eigenfrequencies are identical, the dynamic modu-
lation in our APT symmetric scheme enables frequency detun-
ing of �ωm∕2 for those two lasing modes, respectively, in the
unbroken APT phase. This property makes possible bi-color
lasing in a single micro-ring cavity. Most importantly, those las-
ing modes propagate in opposite directions and hence are easy
to separate spatially, which is not possible for conventional
multi-mode lasers.

Considering κm and ωm are separately determined by the
spatiotemporal modulation depth and frequency, respectively,
this APT system offers flexible control over the lasing proper-
ties. For example, the same phase transition process of
ω1,2 � ωm∕2 can also be observed with determined ωm and
varying κm [Figs. 2(d) and 2(e)]. The EP position is shifted
towards larger κm with larger ωm. As the bi-color laser works

Fig. 2. (a) Real and (b) imaginary parts of normalized eigenfre-
quency spectra with respect to modulation frequency ωm and coupling
coefficient κm. The black dashed lines are the exceptional lines, where
the two eigenstates degenerate. (c) Real (solid lines) and imaginary
parts (dashed lines) of eigenfrequencies under a fixed κm indicated
by the gray planes in (a) and (b), respectively. The yellow and red re-
gions indicate broken APT and unbroken APT phases, respectively.
(d) Real and (e) imaginary parts of the eigenfrequencies versus κm with
different ωm (indicated by different colors). The red circles in (d) in-
dicate the uncoupled cases (κm � 0), and there are no sidebands. The
red and blue curves are the modes in a PT symmetric case as reported
in Ref. [15] for reference.
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only in the broken APT phase, the position of the EP can be
effectively treated as an on–off switch for bi-color lasing oper-
ation. Since the EP is located at κm � �ωm∕2, both ωm and κm
determine the lasing threshold. Moreover, ωm also tunes the
frequency difference between two lasing modes.

3. MICRO-RING BI-COLOR DESIGN AND
NUMERICAL VALIDATION

The unique features of our APT symmetry in the unbroken
APT phase provide the theoretical keystone for realizing a de-
multiplexed multi-color laser. We chose realistic material
parameters to construct our bi-color laser. Our micro-ring res-
onator consists of a semiconductor gain material, InGaAsP
multi-quantum well (MQW), which sits on InP substrate.
We kept the same sinusoidal profile of modulation as discussed
in Section 2. The WGMs of different orders supported by the
mirco-ring cavity are denoted by j�li, where the positive and
negative signs indicate CW and CCWmodes, respectively. The
mode number l is an integer that can be calculated from
l � Dneff∕λ, where D is the perimeter of the micro-ring,
neff is the effective index of the WGM, and λ is the free-space
wavelength. We choose j�li as two uncoupled modes and
introduce the coupling through spatial phase-matching condi-
tion Lm � 2l . In addition, we have the modulation frequency
ωm much smaller than the free spectral range (FSR) of the
micro-ring to ensure that the coupling happens only between
j�li. Since ΔϵI is proportional to κm between the j�li modes
(see Appendix E for a detailed derivation), for the sake of sim-
plicity, we use directly ΔϵI instead of κm in the following
discussion.

We established a numerical model and conducted full-wave
simulations of the proposed bi-color micro-ring laser using the
finite difference time-domain (FDTD) method. The imaginary
part of the permittivity of the micro-ring is spatiotemporally
modulated in the azimuthal direction (see Appendix A for de-
tails of the model). To extract the lasing output, we used two
straight waveguides evanescently coupled to the micro-ring in
an add–drop configuration. With l � 21, Lm � 42, and spa-
tiotemporal modulation frequency ωm � 1 THz, the evolution
of the resonances at different modulation depths ΔϵI can be
observed in the normalized transmission and lasing spectra
[Figs. 3(a) and 3(b)]. The definitions of the ports are depicted
in the inset of Fig. 3. Without modulation, the signal enters the
structure through the left-side waveguide from port 1 and cou-
ples to the CCW resonance, creating a dip in the transmission
spectrum T 21 and a peak in the reflection spectrum T 11

around 1.555 μm.
Increasing the modulation depth of permittivity, a total of

four resonances are clearly observed [Figs. 3(a) and 3(b)]. They
can be classified into two categories in which the resonance
frequencies differ by 1 THz (or 8 nm in terms of wavelength).
In each category, the frequency difference between two reso-
nances persistently reduces while increasing ΔϵI and finally be-
comes zero when ΔϵI ≥ 0.415. This indicates the phase
transition across this point. In the red region, two amplified
peaks are observed in the normalized spectra. We note that
there is no signal input in this region. The numerically acquired
resonance frequencies at different ΔϵI agree well with our

prediction based on the APT symmetry theory across both yel-
low and red regions [Fig. 3(c)]. The small discrepancy is caused
by the static backscattering induced by the mesh in our sim-
ulation model.

To further verify whether this change in spectra is indeed
the phase transition between broken and unbroken APT
phases, we obtained the imaginary parts of resonance wavevec-
tors by fitting each spectrum with two Lorentz functions. The
imaginary parts of the wavevectors β 0 0 then can be acquired
through β 0 0 � Δω 0 0∕c � 2nπΔλ∕λ2, where c, n, λ, and Δλ
are the speed of light, refractive index of material, center wave-
length, and linewidth of the resonance, respectively. The ob-
tained values from simulations again match well with those
calculated from the APT theory [Fig. 3(d)]. We can see that
bifurcation occurs between two resonances in the imaginary
spectrum in the red region, while they coalesce in the yellow
region, which also matches well with our theoretical prediction,
indicating the phase transition of APT symmetry. We also can
see the linewidth of the resonance narrows when increasing the
modulation depth before reaching the lasing threshold. Then it
broadens again after passing the threshold. This phenomenon is
due to the absolute value of the resonance frequency’s imagi-
nary part decreasing with the modulation depth before reaching
the lasing threshold and increasing after it [28]. Additionally, in
our simulation, we noticed that β 0 0 is not zero at the EP. This is
owed to the inherent loss in the system [Fig. 3(d)].

In the unbroken APT phase, two spectral lines separated by
ωm can be detected in all four ports. Lasing output at
λ � 1.560 μm is observed at ports 2 and 4, which results from

Fig. 3. (a) Normalized reflection spectra T 11 and lasing spectra T 1,
(b) normalized transmission spectra T 21 and lasing spectra T 2 under
different modulation depths ΔϵI with a fixed modulation frequency
ωm � 1 THz (see Fig. 6 in Appendix B for T 31 and T 41). The def-
initions of the ports, T 11, T 21, T 1, and T 2 are depicted in the insets.
The yellow and red regimes indicate the broken and unbroken APT
phases, respectively. (c) Real parts of the resonance frequencies and
(d) imaginary parts of resonance wave vectors extracted from full-wave
simulations (circles) and theoretical calculations based on the APT
symmetry (dashed lines). The colors of the dashed curves in
(c) and (d) correspond to the lines of the same color in (a) and (b).
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the CWmode; the λ � 1.552 μm laser line is observed at ports
1 and 3, which comes from the CCW mode [Figs. 4(a) and
4(b)]. Therefore, it is verified that two laser lines with different
wavelengths can be generated simultaneously in a single micro-
ring cavity and well separated inherently due to the direction-
ality of the WGM modes. The bi-color lasing frequencies can
be continuously tuned through varying the modulation
frequency ωm within jωmj < 2κm [Fig. 4(c)]. In addition,
the frequency tuning range for the bi-color lasing mode can
be extended by increasing ΔϵI .

Moreover, our APT-based laser significantly reduces unnec-
essary mode competition. In our micro-ring laser, only the de-
sired WGMs (j�21i) can be coupled to each other through
dynamic modulation under a phase-matching condition
(Lm � 42). The modulation frequency is smaller than FSR;
hence, no coupling among neighboring WGMs was intro-
duced. In addition, the dynamic modulation redistributes the
optical gain such that it maximizes amplification for the desired
mode while suppressing all other WGMs (Appendix F).
Therefore, lasing from only the desired modes (j�21i) can
be achieved [Fig. 4(d)]. This reduction of mode competition
improves the stability of bi-color lasing under various pumping
conditions. We note that the discrepancy in lasing intensity
between the two modes resulted from the coupling difference
between the CCW and CW WGMs to the output waveguide
induced by the geometry discretization of the micro-ring in our
simulation.

In addition to the laser operation we demonstrated in un-
broken APT phase, nonreciprocal light propagation can be

observed in the broken APT phase of our system. The temporal
modulation of permittivity shifts the resonances oppositely for
CW and CCWmodes and breaks the reciprocity of the system.
This can be verified by comparing the transmission spectra T 21

and T 12 at different input ports (Appendix E). This nonrecip-
rocal behavior in the broken APT regime could lead to
realization of other useful optical elements such as an optical
isolator.

4. DISCUSSION ON EXPERIMENTAL
REALIZATION

In practice, azimuthal spatiotemporal modulation can be real-
ized by interference between two laser pump beams of different
frequencies carrying different orbital angular momenta
(OAMs). The imprinted vortex phase front of different
OAM orders will provide the required Lm. In the past, we have
achieved spatiotemporal modulation of the real part of permit-
tivity along a straight line using a similar technique, where we
used two laser pump beams with slightly different frequencies
to generate a traveling wave interference pattern [26,29]. The
temporal modulation frequency can easily reach up to several
terahertz by exploiting the instantaneous third-order nonlinear
response of material [30]. However, the maximum modulation
speed of gain is limited by the relaxation time of the excited
carriers in the material, which is typically around nanosecond
scale in semiconductors. Hence, the largest modulation fre-
quency achievable for gain is in the gigahertz range. To have
higher modulation frequency, a feasible solution is to apply a
spatiotemporal loss modulation instead of gain modulation
with materials of ultrafast response. For example, the relaxation
time of carriers in graphene can be as short as several hundreds
of femtoseconds [31], and tuning the loss of graphene under
optical pumping has already been utilized for ultrafast optical
modulators [32]. Therefore, we envision that by placing thin
layers of graphene on top of our optical structures, we can ef-
fectively modulate the imaginary part of the permittivity at a
high frequency.

5. CONCLUSION

In conclusion, we theoretically proposed and numerically vali-
dated an APT symmetric bi-color laser enabled by spatiotem-
poral modulation of gain/loss distribution in a micro-ring
resonator. Tunable modulation frequency and modulation
depth provide two degrees of freedom for real-time manipula-
tion of the lasing dynamics. This APT-symmetry-enabled bi-
color lasing scheme can be generalized to multi-color cases with
more than two lasing modes. Exploiting the non-Hermitian
symmetries in optical systems, we can expect the revolution
of current lasers in terms of functionality, stability, size, etc.,
which could enable a plethora of applications such as on-chip
coherent light sources for communications, remote sensing,
and displays.

APPENDIX A. SIMULATION MODEL OF TIME-
VARYING STRUCTURE

The micro-ring bi-color laser model with dynamic modulation
was established in Lumerical FDTD software. The time-varying

Fig. 4. Normalized intensity distribution of the micro-ring system
at (a) λ � 1.552 μm and (b) λ � 1.560 μm with ΔϵI � 0.508 and
ωm � 1 THz. The white lines outline the geometry of the micro-ring
as well as the coupling waveguides. The white arrows indicate the trav-
eling direction of spatiotemporal modulation, and the yellow arrows
show the output lasing direction. The ports are numbered in the same
way as those shown in Fig. 3. (c) Real parts of resonance frequencies
extracted from full-wave simulations (circles) and the calculated ones
based on our APT theory (dashed lines) with a fixed ΔϵI � 0.315
while varying ωm. The red regime indicates the unbroken APT phase.
(d) Lasing spectra from all ports with the same modulation depth as in
(a) and (b). l is the azimuthal order of the WGM.
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permittivity was realized by a customized material plug-in.
Compared with modulation of the real part of permittivity,
manipulation of only the imaginary part was difficult since
we could not directly assign an imaginary number to variables
in the material plug-in. A viable way is to use the Lorentz model
with well-tuned parameters. Therefore, the modulation of per-
mittivity Δϵm can be written as

Δϵm�t ,ϕ� �
ω2
0m

ω2
0m − 2iΓmω − ω2 cos�ωmt − Lmϕ�Δϵ: (A1)

Here ω0m is the center resonance frequency, and Γm is the
damping coefficient of the material. ω is the frequency of a
wave traveling through the medium, and ωm, Lm, ϕ are modu-
lation frequency, modulation wave vector, and modulation
phase, respectively. Δϵ is the modulation depth that we can
tune during simulation. To get almost a pure imaginary part
modulation, we first set ω0m around the scale of simulation
frequency (>100 THz for 1.555 μm) and Γm ≫ ω0m.
However, the simulation process was quite unstable, and no
dynamic modulation effect was observed if Γm> 1016 s−1.
Therefore, we reduced Γm and kept it slightly larger than ω0m
with ω0m � 1.215 × 1015 s−1 and Γm � 3.5 × 1015 s−1. With
Δϵ cos�ωmt − Lmϕ� � 1, the time-independent Δϵm around
1.55 μm is shown in Fig. 5. The imaginary part is almost
100 times larger than the real part, which can approximately
be viewed as the modulation of the imaginary part only. But
the influence of a tiny residue real part modulation on eigen-
mode frequencies cannot be fully eliminated, which is mani-
fested as small but persistent drift of all resonance curves under
increasing modulation depth, as shown in Figs. 3(a)–3(c).

APPENDIX B. DEVIATION OF TRANSMISSION
SPECTRA FROM THEORETICAL PREDICTION

The theoretical prediction deviated a little bit from the simu-
lation result when ΔϵI < 0.135 (Fig. 3), because there was
competition between the dynamic coupling and static backscat-
tering process induced by the simulation grid. The static

backscattering was weak but dominant when the modulation
was small, which would shift the resonances slightly.

In Figs. 6(a) and 6(b), we also notice that the second res-
onance cannot be observed in T 41, while T 31 looks almost the
same as in Fig. 3(a). Since we used a short input pulse whose
length was less than the perimeter of the ring in the simulation,
the field was unevenly distributed inside the ring. The sideband
did not get much energy converted from the main resonance
owing to a short propagation length in the first half-cycle along
the ring. The energy coupled out into the drop waveguide was
very small. Then the sideband accumulated enough energy
from the last half-cycle but most was coupled out into the input
bus waveguide. Therefore, we could see a sideband peak in T 21

but not in T 41.

APPENDIX C. TRANSMISSION SPECTRA OVER
DIFFERENT MODULATION FREQUENCIES

Figures 3 and 6 show the reflection and transmission spectra
over different modulation depths. Based on Eq. (4), increasing
the modulation frequency from zero will result in the phase
transition from unbroken APT phase to broken APT phase.
This trend can be verified in Figs. 4 and 7. In Fig. 7, all
the spectra start from one lasing peak and bifurcate into two
converging resonance peaks (or dips) under increasing ωm.
The frequency difference between two resonances increases
with larger ωm. At the same time, the amplitude of the second
resonance reduces owing to the deviation from the center fre-
quency of the original WGM resonance, which will result in a
larger phase mismatch. If we record the resonance position and
plot the dependence of resonance wavelength with ωm, they
also fit well with APT theory as in Fig. 4(c).

APPENDIX D. EFFECTIVE MODULATION DEPTH
FROM STEPWISE SIMULATION

To apply spatiotemporal modulation on the micro-ring in sim-
ulation, the assumption of continuous modulation can be ap-
proximated only by discretized blocks. The permittivity of
these blocks differs coherently by a fixed phase shift along
the ring to represent the spatial variation. If the ring is discre-
tized into N blocks in total along the ring, the modulation can
be expressed as

Fig. 6. (a) Numerical normalized transmission spectra T 31, lasing
spectra T 3, (b) transmission spectra T 41, and lasing spectra T 4 under
different modulation depths ΔϵI and ωm � 1 THz. The definitions
of T 31, T 41, T 3, and T 4 are depicted in the inset. The yellow and red
shaded areas indicate different APT phases.
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Fig. 5. Real and imaginary parts of Δϵm around 1.55 μm under
ω0m � 1.215 × 1015 s−1 and Γm � 3.5 × 1015 s−1. The imaginary
part is around 100 times larger than the real part.
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ϵeff �ϕ, t� � Δϵm
XN
n�1

cos�ωmt − Lmϕn�rect
�
ϕ − ϕn

Δϕ

�
, (D1)

where rect�x� is a rectangular function with unitary height and
width centered at zero. Δϵm is modulation strength. ωm, t, Lm,
and ϕn have the same definition as in Eq. (A1). Δϕ � 2π∕N is
the angular width of a single block, and ϕn � �n − 1∕2�Δϕ is
the angular position of the center of the nth block. Based on
Poisson summation, it can be expanded as [33]

ϵeff �ϕ, t� � Δϵm
X∞
k�−∞

�−1�k�N−1�sinc
�
Lm � kN

N

�

× cos�ωmt − �Lm � kN �ϕ�, (D2)

where sinc�x� � sin�πx�∕�πx�, and k is an integer. Therefore, a
discretized stepwise permittivity profile can be decomposed
into a combination of sinusoidal modulation with the same
modulation frequency but different wave vectors. Considering
the phase match condition, only the one satisfying Lm � kN �
2l can resonantly introduce dynamic coupling between j�li.
The effective modulation depth can be computed as

Δϵeff � Δϵmsinc
�
2l
N

�
: (D3)

In our simulation,N � 100, l � 21, with k � 0, Lm � 2l ,
and Δϵeff � 0.7341Δϵm. Moreover, the actual modulation
depth of the imaginary part should also consider the modula-
tion depth of the Lorentz model in the material plug-in, which
is Δϵm � 0.173Δϵ around 1.55 μm. Considering all of these,
we can get Δϵeff � 0.127Δϵ. Therefore, the sinusoidal modu-
lation can be well approximated by a stepwise modulation
model that differs only by a constant factor.

APPENDIX E. THEORETICAL CALCULATION OF
NONRECIPROCAL TRANSMISSION SPECTRA

Here we take the bypass configuration with only one bus wave-
guide for simplicity. We assume the electric field amplitudes
of j�li (CW) and j−li (CCW) modes are a1 and a2, respec-
tively. The resonance frequency is ω0. The time-independent
coupling coefficients κ12 and κ21 can be computed by the
electric field overlapping between two modes, which is
κkl � ω0∕2

R
dr3ΔϵIE


k �r�El �r�. In a single-mode waveguide,
the spatial mode profile across the cross section is the same for
j�li. Thus, we can reduce the coupling coefficient expression
to κ12 � κ21 � κm � ω0ΔϵI∕4ϵ [34]. Here ϵ is the permittiv-
ity of the medium without modulation.

Incorporating the excitation from the bus waveguide, the
coupled mode equations are

da1
dt

�
�
−iω0 −

1

τ

�
a1 � iκme−iωmta2 � μ1s�1, (E1)

da2
dt

�
�
−iω0 −

1

τ

�
a2 � iκmeiωmta2 � μ2s�2: (E2)

Here s�1 and s�2 are field amplitudes of excitation from
port 1 and port 2. ωm is the modulation frequency.
μ1 � μ2 � μ are evanescent coupling coefficients between
the bus waveguide and j�li modes. 1∕τ is the total loss factor
including coupling, scattering, and radiation loss.

The output field transmission coefficient from port 1 (s−1)
and port 2 (s−2) can be expressed as

s−1 � eiϕ1�s�1 − μ


1a1�, (E3)

s−2 � eiϕ2�s�2 − μ


2a2�, (E4)

where ϕ1 and ϕ2 are coupling phases. With all the equations
above, the normalized transmission spectra with excitation
from different ports are solved as

T 21�ω� �
���� s−2s�1

����
2

�
����1� i�ωs − ωm�jμj2

�ωm − ωs�ωs � κ2m

����
2

, (E5)

T 12�ω� �
���� s−1s�2

����
2

�
����1� i�ωs � ωm�jμj2

−�ωm � ωs�ωs � κ2m

����
2

, (E6)

Fig. 7. Simulated transmission spectra from T 11 to T 41 and lasing
spectra from T 1 to T 4 under increasing modulation frequency.
Modulation depth Δϵ � 0.315. The circles mark the spectral position
of the resonances. The red regime indicates unbroken APT phase.

Fig. 8. Transmission spectra T 21 and T 12 around resonance j�18i
in broken APT phase. The micro-ring diameter is smaller than the
one in the main text. The crosses are simulation results under three
different Δϵ, and the curves are theoretical calculation from Eqs. (E5)
and (E6). Here Δϵth is the modulation depth at EP.
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where ωs � ω − ω0 − 1∕iτ indicates the complex resonance
frequency. The calculated curves based on coupled mode
theory fit the simulation result well in broken APT phase as
depicted in Fig. 8. The resonances are shifted oppositely with
excitation from different ports. Considering the existence of
temporal modulation, this system is indeed nonreciprocal in
broken APT phase.

APPENDIX F. TEMPORAL FIELD EVOLUTION IN
DIFFERENT APT PHASE

The single-mode APT symmetry lasing mechanism can be
further explained by temporal field evolution inside a micro-
ring cavity. Interference patterns of j�17i excited by a
pulse around 1550 nm in broken APT phase are shown in
Figs. 9(a)–9(c). The intensity profile is not azimuthally uniform
along the ring and decays gradually. Within one modulation
period 1∕ωm, the movement of intensity maxima is not
synchronized with the motion of the modulation profile.
The field maxima travel across both gain and loss regions with-
out any preference of staying in one region compared with the
other. Adding the inherent loss of the system, the time-averaged
energy dissipation rate will be lossy, and the field intensity
is observed to decay gradually. As a comparison, the field

movement in unbroken APT phase is synchronized with the
evolution of modulation, as depicted in Figs. 9(d)–9(f ). The
field localized in the gain region will be consistently amplified
and finally contribute to the lasing in the micro-ring. It is worth
mentioning that this works only when the number of field
maxima exactly equals the period of modulation along the
micro-ring. Any deviation from this equality will reduce over-
lapping between the gain region and field intensity, leading to a
larger lasing threshold. With reasonable pumping intensity, the
lasing can be controlled within a single mode without any dis-
turbance from other longitudinal modes, which explains what
we observe in Fig. 4(d).
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